Systematic interpretation of microarray data using experiment annotations

<p>Abstract</p> <p>Background</p> <p>Up to now, microarray data are mostly assessed in context with only one or few parameters characterizing the experimental conditions under study. More explicit experiment annotations, however, are highly useful for interpreting micro...

Full description

Bibliographic Details
Main Authors: Frohme Marcus, Hauser Nicole C, Beckmann Boris, Bauer Andrea, Witt Olaf, Busold Christian H, Fellenberg Kurt, Winter Stefan, Dippon Jürgen, Hoheisel Jörg D
Format: Article
Language:English
Published: BMC 2006-12-01
Series:BMC Genomics
Online Access:http://www.biomedcentral.com/1471-2164/7/319
_version_ 1818787758026522624
author Frohme Marcus
Hauser Nicole C
Beckmann Boris
Bauer Andrea
Witt Olaf
Busold Christian H
Fellenberg Kurt
Winter Stefan
Dippon Jürgen
Hoheisel Jörg D
author_facet Frohme Marcus
Hauser Nicole C
Beckmann Boris
Bauer Andrea
Witt Olaf
Busold Christian H
Fellenberg Kurt
Winter Stefan
Dippon Jürgen
Hoheisel Jörg D
author_sort Frohme Marcus
collection DOAJ
description <p>Abstract</p> <p>Background</p> <p>Up to now, microarray data are mostly assessed in context with only one or few parameters characterizing the experimental conditions under study. More explicit experiment annotations, however, are highly useful for interpreting microarray data, when available in a statistically accessible format.</p> <p>Results</p> <p>We provide means to preprocess these additional data, and to extract relevant traits corresponding to the transcription patterns under study. We found correspondence analysis particularly well-suited for mapping such extracted traits. It visualizes associations both among and between the traits, the hereby annotated experiments, and the genes, revealing how they are all interrelated. Here, we apply our methods to the systematic interpretation of radioactive (single channel) and two-channel data, stemming from model organisms such as yeast and <it>drosophila </it>up to complex human cancer samples. Inclusion of technical parameters allows for identification of artifacts and flaws in experimental design.</p> <p>Conclusion</p> <p>Biological and clinical traits can act as landmarks in transcription space, systematically mapping the variance of large datasets from the predominant changes down toward intricate details.</p>
first_indexed 2024-12-18T14:12:51Z
format Article
id doaj.art-0f722b7129c74b6295fe35b0c933e30b
institution Directory Open Access Journal
issn 1471-2164
language English
last_indexed 2024-12-18T14:12:51Z
publishDate 2006-12-01
publisher BMC
record_format Article
series BMC Genomics
spelling doaj.art-0f722b7129c74b6295fe35b0c933e30b2022-12-21T21:05:05ZengBMCBMC Genomics1471-21642006-12-017131910.1186/1471-2164-7-319Systematic interpretation of microarray data using experiment annotationsFrohme MarcusHauser Nicole CBeckmann BorisBauer AndreaWitt OlafBusold Christian HFellenberg KurtWinter StefanDippon JürgenHoheisel Jörg D<p>Abstract</p> <p>Background</p> <p>Up to now, microarray data are mostly assessed in context with only one or few parameters characterizing the experimental conditions under study. More explicit experiment annotations, however, are highly useful for interpreting microarray data, when available in a statistically accessible format.</p> <p>Results</p> <p>We provide means to preprocess these additional data, and to extract relevant traits corresponding to the transcription patterns under study. We found correspondence analysis particularly well-suited for mapping such extracted traits. It visualizes associations both among and between the traits, the hereby annotated experiments, and the genes, revealing how they are all interrelated. Here, we apply our methods to the systematic interpretation of radioactive (single channel) and two-channel data, stemming from model organisms such as yeast and <it>drosophila </it>up to complex human cancer samples. Inclusion of technical parameters allows for identification of artifacts and flaws in experimental design.</p> <p>Conclusion</p> <p>Biological and clinical traits can act as landmarks in transcription space, systematically mapping the variance of large datasets from the predominant changes down toward intricate details.</p>http://www.biomedcentral.com/1471-2164/7/319
spellingShingle Frohme Marcus
Hauser Nicole C
Beckmann Boris
Bauer Andrea
Witt Olaf
Busold Christian H
Fellenberg Kurt
Winter Stefan
Dippon Jürgen
Hoheisel Jörg D
Systematic interpretation of microarray data using experiment annotations
BMC Genomics
title Systematic interpretation of microarray data using experiment annotations
title_full Systematic interpretation of microarray data using experiment annotations
title_fullStr Systematic interpretation of microarray data using experiment annotations
title_full_unstemmed Systematic interpretation of microarray data using experiment annotations
title_short Systematic interpretation of microarray data using experiment annotations
title_sort systematic interpretation of microarray data using experiment annotations
url http://www.biomedcentral.com/1471-2164/7/319
work_keys_str_mv AT frohmemarcus systematicinterpretationofmicroarraydatausingexperimentannotations
AT hausernicolec systematicinterpretationofmicroarraydatausingexperimentannotations
AT beckmannboris systematicinterpretationofmicroarraydatausingexperimentannotations
AT bauerandrea systematicinterpretationofmicroarraydatausingexperimentannotations
AT wittolaf systematicinterpretationofmicroarraydatausingexperimentannotations
AT busoldchristianh systematicinterpretationofmicroarraydatausingexperimentannotations
AT fellenbergkurt systematicinterpretationofmicroarraydatausingexperimentannotations
AT winterstefan systematicinterpretationofmicroarraydatausingexperimentannotations
AT dipponjurgen systematicinterpretationofmicroarraydatausingexperimentannotations
AT hoheiseljorgd systematicinterpretationofmicroarraydatausingexperimentannotations