Instantons: thick-wall approximation

Abstract We develop a new method for estimating the decay probability of the false vacuum via regularized instantons. Namely, we consider the case where the potential is either unbounded from below or the second minimum corresponding to the true vacuum has a depth exceeding the height of the potenti...

Full description

Bibliographic Details
Main Authors: V. F. Mukhanov, A. S. Sorin
Format: Article
Language:English
Published: SpringerOpen 2022-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP07(2022)147
Description
Summary:Abstract We develop a new method for estimating the decay probability of the false vacuum via regularized instantons. Namely, we consider the case where the potential is either unbounded from below or the second minimum corresponding to the true vacuum has a depth exceeding the height of the potential barrier. In this case, the materialized bubbles dominating the vacuum decay naturally have a thick wall and the thin-wall approximation is not applicable. We prove that in such a case the main contribution to the action determining the decay probability comes from the part of the solution for which the potential term in the equation for instantons can be neglected compared to the friction term. We show that the developed approximation exactly reproduces the leading order results for the few known exactly solvable potentials. The proposed method is applied to generic scalar field potentials in an arbitrary number of dimensions.
ISSN:1029-8479