Yapay sinir ağı temelli uyarlamalı doğrusal model-öngörülü kontrol
Gerçek zamanlı sistemlerin modellenemeyen dinamikleri ve bozucu etkileri sistemin doğru çalışmasını engellemektedir. Sistemin kontrolü için tasarlanan denetleyiciler, istenmeyen etkileri dikkate alacak şekilde olmalıdır. Bu çalışmada, doğrusal sistemler için uyarlamalı belirsizlik modelleyici temell...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Pamukkale University
2016-12-01
|
Series: | Pamukkale University Journal of Engineering Sciences |
Subjects: | |
Online Access: | https://dergipark.org.tr/tr/pub/pajes/issue/27233/286498?publisher=pamukkale |
Summary: | Gerçek
zamanlı sistemlerin modellenemeyen dinamikleri ve bozucu etkileri sistemin
doğru çalışmasını engellemektedir. Sistemin kontrolü için tasarlanan
denetleyiciler, istenmeyen etkileri dikkate alacak şekilde olmalıdır. Bu
çalışmada, doğrusal sistemler için uyarlamalı belirsizlik modelleyici temelli
model-öngörülü denetleyici (UMPC) önerilmiştir. Modelleyicide yapay sinir ağı
(YSA) yapısı kullanılarak belirsizlik fonksiyonunun uyarlamalı öğrenme adımı
ile hızlı şekilde yaklaşıklanması sağlanmıştır. Uyarlamalı belirsizlik
modelleyici temelli model-öngörülü denetleyicinin kararlılığı Lyapunov aday
fonksiyonu ile gösterilmiştir. Standart MPC ve önerilen UMPC gerçek-zamanlı
DC/DC güç dönüştürücü kontrolüne uygulanmıştır. Standart MPC kullanıldığında
bilinmeyen parametreler ve ortam gürültüsünden kaynaklı DC/DC dönüştürücü iyi
izleme sağlayamamıştır. Fakat önerilen yapının uygulanması ile belirsizlikler
tahmin edilerek ve etkisi sistem dinamiklerinde kullanılarak hassas ve başarılı
izleme sonuçları elde edilmiştir. Önerilen yapının sonraki çalışmalarda
kullanılması öngörülmektedir. |
---|---|
ISSN: | 1300-7009 2147-5881 |