Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR)
Altimetric performance of Global Navigation Satellite System - Reflectometry (GNSS-R) instruments depends on receiver’s bandwidth and signal-to-noise ratio (SNR). The altimetric delay is usually computed from the time difference between the peak of the direct signal waveform and the maximum of the d...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-10-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/13/20/4186 |
_version_ | 1797513177386188800 |
---|---|
author | Oriol Cervelló i Nogués Joan Francesc Munoz-Martin Hyuk Park Adriano Camps Raul Onrubia Daniel Pascual Christoph Rüdiger Jeffrey P. Walker Alessandra Monerris |
author_facet | Oriol Cervelló i Nogués Joan Francesc Munoz-Martin Hyuk Park Adriano Camps Raul Onrubia Daniel Pascual Christoph Rüdiger Jeffrey P. Walker Alessandra Monerris |
author_sort | Oriol Cervelló i Nogués |
collection | DOAJ |
description | Altimetric performance of Global Navigation Satellite System - Reflectometry (GNSS-R) instruments depends on receiver’s bandwidth and signal-to-noise ratio (SNR). The altimetric delay is usually computed from the time difference between the peak of the direct signal waveform and the maximum of the derivative of the reflected signal waveform. Dual-frequency data gathered by the airborne Microwave Interferometric Reflectometer (MIR) in the Bass Strait, between Australia and Tasmania, suggest that this approach is only valid for flat surfaces and large bandwidth receivers. This work analyses different methods to compute the altimetric observables using GNSS-R. A proposed novel method, the Peak-to-Minimum of the 3rd Derivative (P-Min3D) for narrow-band codes (e.g., L1 C/A), and the Peak-to-Half Power (P-HP) for large bandwidth codes (e.g., L5 or E5a codes) show improved performance when using real data. Both methods are also compared to the Peak-to-Peak (P-P) and Peak-to-Maximum of the 1st Derivative (P-Max1D) methods. The key difference between these methods is the determination of the delay position in the reflected signal waveform in order to compute the altimetric observable. Airborne experimental results comparing the different methods, bands and GNSS-R processing techniques show that centimeter level accuracy can be achieved. |
first_indexed | 2024-03-10T06:13:00Z |
format | Article |
id | doaj.art-0f8c71990016460e823f53541acd11e5 |
institution | Directory Open Access Journal |
issn | 2072-4292 |
language | English |
last_indexed | 2024-03-10T06:13:00Z |
publishDate | 2021-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Remote Sensing |
spelling | doaj.art-0f8c71990016460e823f53541acd11e52023-11-22T19:55:29ZengMDPI AGRemote Sensing2072-42922021-10-011320418610.3390/rs13204186Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR)Oriol Cervelló i Nogués0Joan Francesc Munoz-Martin1Hyuk Park2Adriano Camps3Raul Onrubia4Daniel Pascual5Christoph Rüdiger6Jeffrey P. Walker7Alessandra Monerris8CommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainCommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainCommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainCommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainCommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainCommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainScience and Innovation Group/Research, Bureau of Meteorology, Docklands, VIC 3008, AustraliaDepartment of Civil Engineering, Monash University, Clayton, VIC 3800, AustraliaDepartment of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, AustraliaAltimetric performance of Global Navigation Satellite System - Reflectometry (GNSS-R) instruments depends on receiver’s bandwidth and signal-to-noise ratio (SNR). The altimetric delay is usually computed from the time difference between the peak of the direct signal waveform and the maximum of the derivative of the reflected signal waveform. Dual-frequency data gathered by the airborne Microwave Interferometric Reflectometer (MIR) in the Bass Strait, between Australia and Tasmania, suggest that this approach is only valid for flat surfaces and large bandwidth receivers. This work analyses different methods to compute the altimetric observables using GNSS-R. A proposed novel method, the Peak-to-Minimum of the 3rd Derivative (P-Min3D) for narrow-band codes (e.g., L1 C/A), and the Peak-to-Half Power (P-HP) for large bandwidth codes (e.g., L5 or E5a codes) show improved performance when using real data. Both methods are also compared to the Peak-to-Peak (P-P) and Peak-to-Maximum of the 1st Derivative (P-Max1D) methods. The key difference between these methods is the determination of the delay position in the reflected signal waveform in order to compute the altimetric observable. Airborne experimental results comparing the different methods, bands and GNSS-R processing techniques show that centimeter level accuracy can be achieved.https://www.mdpi.com/2072-4292/13/20/4186cGNSS-R and iGNSS-Rdual bandbandwidthcoherent integration timeocean altimetrysea surface height |
spellingShingle | Oriol Cervelló i Nogués Joan Francesc Munoz-Martin Hyuk Park Adriano Camps Raul Onrubia Daniel Pascual Christoph Rüdiger Jeffrey P. Walker Alessandra Monerris Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR) Remote Sensing cGNSS-R and iGNSS-R dual band bandwidth coherent integration time ocean altimetry sea surface height |
title | Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR) |
title_full | Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR) |
title_fullStr | Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR) |
title_full_unstemmed | Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR) |
title_short | Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR) |
title_sort | improved gnss r altimetry methods theory and experimental demonstration using airborne dual frequency data from the microwave interferometric reflectometer mir |
topic | cGNSS-R and iGNSS-R dual band bandwidth coherent integration time ocean altimetry sea surface height |
url | https://www.mdpi.com/2072-4292/13/20/4186 |
work_keys_str_mv | AT oriolcervelloinogues improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir AT joanfrancescmunozmartin improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir AT hyukpark improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir AT adrianocamps improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir AT raulonrubia improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir AT danielpascual improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir AT christophrudiger improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir AT jeffreypwalker improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir AT alessandramonerris improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir |