Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR)

Altimetric performance of Global Navigation Satellite System - Reflectometry (GNSS-R) instruments depends on receiver’s bandwidth and signal-to-noise ratio (SNR). The altimetric delay is usually computed from the time difference between the peak of the direct signal waveform and the maximum of the d...

Full description

Bibliographic Details
Main Authors: Oriol Cervelló i Nogués, Joan Francesc Munoz-Martin, Hyuk Park, Adriano Camps, Raul Onrubia, Daniel Pascual, Christoph Rüdiger, Jeffrey P. Walker, Alessandra Monerris
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/20/4186
_version_ 1797513177386188800
author Oriol Cervelló i Nogués
Joan Francesc Munoz-Martin
Hyuk Park
Adriano Camps
Raul Onrubia
Daniel Pascual
Christoph Rüdiger
Jeffrey P. Walker
Alessandra Monerris
author_facet Oriol Cervelló i Nogués
Joan Francesc Munoz-Martin
Hyuk Park
Adriano Camps
Raul Onrubia
Daniel Pascual
Christoph Rüdiger
Jeffrey P. Walker
Alessandra Monerris
author_sort Oriol Cervelló i Nogués
collection DOAJ
description Altimetric performance of Global Navigation Satellite System - Reflectometry (GNSS-R) instruments depends on receiver’s bandwidth and signal-to-noise ratio (SNR). The altimetric delay is usually computed from the time difference between the peak of the direct signal waveform and the maximum of the derivative of the reflected signal waveform. Dual-frequency data gathered by the airborne Microwave Interferometric Reflectometer (MIR) in the Bass Strait, between Australia and Tasmania, suggest that this approach is only valid for flat surfaces and large bandwidth receivers. This work analyses different methods to compute the altimetric observables using GNSS-R. A proposed novel method, the Peak-to-Minimum of the 3rd Derivative (P-Min3D) for narrow-band codes (e.g., L1 C/A), and the Peak-to-Half Power (P-HP) for large bandwidth codes (e.g., L5 or E5a codes) show improved performance when using real data. Both methods are also compared to the Peak-to-Peak (P-P) and Peak-to-Maximum of the 1st Derivative (P-Max1D) methods. The key difference between these methods is the determination of the delay position in the reflected signal waveform in order to compute the altimetric observable. Airborne experimental results comparing the different methods, bands and GNSS-R processing techniques show that centimeter level accuracy can be achieved.
first_indexed 2024-03-10T06:13:00Z
format Article
id doaj.art-0f8c71990016460e823f53541acd11e5
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-10T06:13:00Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-0f8c71990016460e823f53541acd11e52023-11-22T19:55:29ZengMDPI AGRemote Sensing2072-42922021-10-011320418610.3390/rs13204186Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR)Oriol Cervelló i Nogués0Joan Francesc Munoz-Martin1Hyuk Park2Adriano Camps3Raul Onrubia4Daniel Pascual5Christoph Rüdiger6Jeffrey P. Walker7Alessandra Monerris8CommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainCommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainCommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainCommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainCommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainCommSensLab—UPC, Universitat Politècnica de Catalunya—BarcelonaTech, and IEEC/CTE-UPC, 08034 Barcelona, SpainScience and Innovation Group/Research, Bureau of Meteorology, Docklands, VIC 3008, AustraliaDepartment of Civil Engineering, Monash University, Clayton, VIC 3800, AustraliaDepartment of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, AustraliaAltimetric performance of Global Navigation Satellite System - Reflectometry (GNSS-R) instruments depends on receiver’s bandwidth and signal-to-noise ratio (SNR). The altimetric delay is usually computed from the time difference between the peak of the direct signal waveform and the maximum of the derivative of the reflected signal waveform. Dual-frequency data gathered by the airborne Microwave Interferometric Reflectometer (MIR) in the Bass Strait, between Australia and Tasmania, suggest that this approach is only valid for flat surfaces and large bandwidth receivers. This work analyses different methods to compute the altimetric observables using GNSS-R. A proposed novel method, the Peak-to-Minimum of the 3rd Derivative (P-Min3D) for narrow-band codes (e.g., L1 C/A), and the Peak-to-Half Power (P-HP) for large bandwidth codes (e.g., L5 or E5a codes) show improved performance when using real data. Both methods are also compared to the Peak-to-Peak (P-P) and Peak-to-Maximum of the 1st Derivative (P-Max1D) methods. The key difference between these methods is the determination of the delay position in the reflected signal waveform in order to compute the altimetric observable. Airborne experimental results comparing the different methods, bands and GNSS-R processing techniques show that centimeter level accuracy can be achieved.https://www.mdpi.com/2072-4292/13/20/4186cGNSS-R and iGNSS-Rdual bandbandwidthcoherent integration timeocean altimetrysea surface height
spellingShingle Oriol Cervelló i Nogués
Joan Francesc Munoz-Martin
Hyuk Park
Adriano Camps
Raul Onrubia
Daniel Pascual
Christoph Rüdiger
Jeffrey P. Walker
Alessandra Monerris
Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR)
Remote Sensing
cGNSS-R and iGNSS-R
dual band
bandwidth
coherent integration time
ocean altimetry
sea surface height
title Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR)
title_full Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR)
title_fullStr Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR)
title_full_unstemmed Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR)
title_short Improved GNSS-R Altimetry Methods: Theory and Experimental Demonstration Using Airborne Dual Frequency Data from the Microwave Interferometric Reflectometer (MIR)
title_sort improved gnss r altimetry methods theory and experimental demonstration using airborne dual frequency data from the microwave interferometric reflectometer mir
topic cGNSS-R and iGNSS-R
dual band
bandwidth
coherent integration time
ocean altimetry
sea surface height
url https://www.mdpi.com/2072-4292/13/20/4186
work_keys_str_mv AT oriolcervelloinogues improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir
AT joanfrancescmunozmartin improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir
AT hyukpark improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir
AT adrianocamps improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir
AT raulonrubia improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir
AT danielpascual improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir
AT christophrudiger improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir
AT jeffreypwalker improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir
AT alessandramonerris improvedgnssraltimetrymethodstheoryandexperimentaldemonstrationusingairbornedualfrequencydatafromthemicrowaveinterferometricreflectometermir