Triangular Cavity Multi-Passband HMSIW Filter Based on Odd-Even Mode Analysis

This letter proposes a multi-passband half-mode substrate integrated waveguide (HMSIW) filter based on the theory of odd and even mode analysis. The filter adopts a triangular HMSIW cavity cut along the diagonal of the rectangle. By etching two dual-mode resonators, the resonant mode of the HMSIW re...

Full description

Bibliographic Details
Main Authors: Luhua Zhang, Aiting Wu, Pengquan Zhang, Zhonghai Zhang
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/23/2927
Description
Summary:This letter proposes a multi-passband half-mode substrate integrated waveguide (HMSIW) filter based on the theory of odd and even mode analysis. The filter adopts a triangular HMSIW cavity cut along the diagonal of the rectangle. By etching two dual-mode resonators, the resonant mode of the HMSIW resonator is coupled with the odd-even mode of the dual-mode resonator to achieve multiple passbands. The defected ground structure (DGS) of the filter can reduce the resonance frequency of the HMSIW cavity without increasing the volume of the HMSIW cavity, making it easier to couple with the odd and even mode frequencies of the resonator. The input and output ports are directly coupled through a microstrip line. In this way, it adds an additional coupling path to the filter, which increases the out-of-band suppression without changing the performance in the passband, and improves the overall performance of the filter. To prove the feasibility of the above method, a multi-passband HMSIW filter was fabricated and tested. The center frequencies of the three passbands of the filter are 2.98 GHz, 4.78 GHz, and 6.62 GHz, respectively. The return loss in the passband is better than −15 dB, and the insertion loss is better than 2 dB. The measured results have a good agreement with the simulation results.
ISSN:2079-9292