<italic>I</italic><sub><italic>ϵ</italic>+</sub>LGEA: A Learning-Guided Evolutionary Algorithm Based on <italic>I</italic><sub><italic>ϵ</italic>+</sub> Indicator for Portfolio Optimization

<p>Portfolio optimization is a classical and important problem in the field of asset management, which aims to achieve a trade-off between profit and risk. Previous portfolio optimization models use traditional risk measurements such as variance, which symmetrically delineate both positive and...

Full description

Bibliographic Details
Main Authors: Feng Wang, Zilu Huang, Shuwen Wang
Format: Article
Language:English
Published: Tsinghua University Press 2023-09-01
Series:Complex System Modeling and Simulation
Subjects:
Online Access:https://www.sciopen.com/article/10.23919/CSMS.2023.0012
_version_ 1827091281850925056
author Feng Wang
Zilu Huang
Shuwen Wang
author_facet Feng Wang
Zilu Huang
Shuwen Wang
author_sort Feng Wang
collection DOAJ
description <p>Portfolio optimization is a classical and important problem in the field of asset management, which aims to achieve a trade-off between profit and risk. Previous portfolio optimization models use traditional risk measurements such as variance, which symmetrically delineate both positive and negative sides and are not practical and stable. In this paper, a new model with cardinality constraints is first proposed, in which the idiosyncratic volatility factor is used to replace traditional risk measurements and can capture the risks of the portfolio in a more accurate way. The new model has practical constraints which involve the sparsity and irregularity of variables and make it challenging to be solved by traditional Multi-Objective Evolutionary Algorithms (MOEAs). To solve the model, a Learning-Guided Evolutionary Algorithm based on <inline-formula id="Z-20230619135908"><math id="mathml_Z-20230619135908" display="inline" overflow="scroll"><msub><mi>I</mi><mrow class="MJX-TeXAtom-ORD"><mi>ϵ</mi><mo>+</mo></mrow></msub></math></inline-formula> indicator (<inline-formula id="M4"><math id="mathml_M4" display="inline" overflow="scroll"><msub><mi>I</mi><mrow class="MJX-TeXAtom-ORD"><mi>ϵ</mi><mo>+</mo></mrow></msub></math></inline-formula>LGEA) is developed. In <inline-formula id="M5"><math id="mathml_M5" display="inline" overflow="scroll"><msub><mi>I</mi><mrow class="MJX-TeXAtom-ORD"><mi>ϵ</mi><mo>+</mo></mrow></msub></math></inline-formula>LGEA, the <inline-formula id="M6"><math id="mathml_M6" display="inline" overflow="scroll"><msub><mi>I</mi><mrow class="MJX-TeXAtom-ORD"><mi>ϵ</mi><mo>+</mo></mrow></msub></math></inline-formula> indicator is incorporated into the initialization and genetic operators to guarantee the sparsity of solutions and can help improve the convergence of the algorithm. And a new constraint-handling method based on <inline-formula id="M7"><math id="mathml_M7" display="inline" overflow="scroll"><msub><mi>I</mi><mrow class="MJX-TeXAtom-ORD"><mi>ϵ</mi><mo>+</mo></mrow></msub></math></inline-formula> indicator is also adopted to ensure the feasibility of solutions. The experimental results on five portfolio trading datasets including up to 1226 assets show that <inline-formula id="M8"><math id="mathml_M8" display="inline" overflow="scroll"><msub><mi>I</mi><mrow class="MJX-TeXAtom-ORD"><mi>ϵ</mi><mo>+</mo></mrow></msub></math></inline-formula>LGEA outperforms some state-of-the-art MOEAs in most cases.</p>
first_indexed 2024-03-11T19:04:58Z
format Article
id doaj.art-0faf4fd8df5b4153b6aa88c53d4560bf
institution Directory Open Access Journal
issn 2096-9929
language English
last_indexed 2025-03-20T05:53:49Z
publishDate 2023-09-01
publisher Tsinghua University Press
record_format Article
series Complex System Modeling and Simulation
spelling doaj.art-0faf4fd8df5b4153b6aa88c53d4560bf2024-10-03T01:16:44ZengTsinghua University PressComplex System Modeling and Simulation2096-99292023-09-013319120110.23919/CSMS.2023.0012<italic>I</italic><sub><italic>ϵ</italic>+</sub>LGEA: A Learning-Guided Evolutionary Algorithm Based on <italic>I</italic><sub><italic>ϵ</italic>+</sub> Indicator for Portfolio OptimizationFeng Wang0Zilu Huang1Shuwen Wang2School of Computer Science, Wuhan University, Wuhan 430072, ChinaSchool of Computer Science, Wuhan University, Wuhan 430072, ChinaSloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA<p>Portfolio optimization is a classical and important problem in the field of asset management, which aims to achieve a trade-off between profit and risk. Previous portfolio optimization models use traditional risk measurements such as variance, which symmetrically delineate both positive and negative sides and are not practical and stable. In this paper, a new model with cardinality constraints is first proposed, in which the idiosyncratic volatility factor is used to replace traditional risk measurements and can capture the risks of the portfolio in a more accurate way. The new model has practical constraints which involve the sparsity and irregularity of variables and make it challenging to be solved by traditional Multi-Objective Evolutionary Algorithms (MOEAs). To solve the model, a Learning-Guided Evolutionary Algorithm based on <inline-formula id="Z-20230619135908"><math id="mathml_Z-20230619135908" display="inline" overflow="scroll"><msub><mi>I</mi><mrow class="MJX-TeXAtom-ORD"><mi>ϵ</mi><mo>+</mo></mrow></msub></math></inline-formula> indicator (<inline-formula id="M4"><math id="mathml_M4" display="inline" overflow="scroll"><msub><mi>I</mi><mrow class="MJX-TeXAtom-ORD"><mi>ϵ</mi><mo>+</mo></mrow></msub></math></inline-formula>LGEA) is developed. In <inline-formula id="M5"><math id="mathml_M5" display="inline" overflow="scroll"><msub><mi>I</mi><mrow class="MJX-TeXAtom-ORD"><mi>ϵ</mi><mo>+</mo></mrow></msub></math></inline-formula>LGEA, the <inline-formula id="M6"><math id="mathml_M6" display="inline" overflow="scroll"><msub><mi>I</mi><mrow class="MJX-TeXAtom-ORD"><mi>ϵ</mi><mo>+</mo></mrow></msub></math></inline-formula> indicator is incorporated into the initialization and genetic operators to guarantee the sparsity of solutions and can help improve the convergence of the algorithm. And a new constraint-handling method based on <inline-formula id="M7"><math id="mathml_M7" display="inline" overflow="scroll"><msub><mi>I</mi><mrow class="MJX-TeXAtom-ORD"><mi>ϵ</mi><mo>+</mo></mrow></msub></math></inline-formula> indicator is also adopted to ensure the feasibility of solutions. The experimental results on five portfolio trading datasets including up to 1226 assets show that <inline-formula id="M8"><math id="mathml_M8" display="inline" overflow="scroll"><msub><mi>I</mi><mrow class="MJX-TeXAtom-ORD"><mi>ϵ</mi><mo>+</mo></mrow></msub></math></inline-formula>LGEA outperforms some state-of-the-art MOEAs in most cases.</p>https://www.sciopen.com/article/10.23919/CSMS.2023.0012portfolio optimizationevolutionary algorithmsparse solution spaceindicator-based evolutionary algorithm (ea)
spellingShingle Feng Wang
Zilu Huang
Shuwen Wang
<italic>I</italic><sub><italic>ϵ</italic>+</sub>LGEA: A Learning-Guided Evolutionary Algorithm Based on <italic>I</italic><sub><italic>ϵ</italic>+</sub> Indicator for Portfolio Optimization
Complex System Modeling and Simulation
portfolio optimization
evolutionary algorithm
sparse solution space
indicator-based evolutionary algorithm (ea)
title <italic>I</italic><sub><italic>ϵ</italic>+</sub>LGEA: A Learning-Guided Evolutionary Algorithm Based on <italic>I</italic><sub><italic>ϵ</italic>+</sub> Indicator for Portfolio Optimization
title_full <italic>I</italic><sub><italic>ϵ</italic>+</sub>LGEA: A Learning-Guided Evolutionary Algorithm Based on <italic>I</italic><sub><italic>ϵ</italic>+</sub> Indicator for Portfolio Optimization
title_fullStr <italic>I</italic><sub><italic>ϵ</italic>+</sub>LGEA: A Learning-Guided Evolutionary Algorithm Based on <italic>I</italic><sub><italic>ϵ</italic>+</sub> Indicator for Portfolio Optimization
title_full_unstemmed <italic>I</italic><sub><italic>ϵ</italic>+</sub>LGEA: A Learning-Guided Evolutionary Algorithm Based on <italic>I</italic><sub><italic>ϵ</italic>+</sub> Indicator for Portfolio Optimization
title_short <italic>I</italic><sub><italic>ϵ</italic>+</sub>LGEA: A Learning-Guided Evolutionary Algorithm Based on <italic>I</italic><sub><italic>ϵ</italic>+</sub> Indicator for Portfolio Optimization
title_sort italic i italic sub italic ϵ italic sub lgea a learning guided evolutionary algorithm based on italic i italic sub italic ϵ italic sub indicator for portfolio optimization
topic portfolio optimization
evolutionary algorithm
sparse solution space
indicator-based evolutionary algorithm (ea)
url https://www.sciopen.com/article/10.23919/CSMS.2023.0012
work_keys_str_mv AT fengwang italiciitalicsubitaliceitalicsublgeaalearningguidedevolutionaryalgorithmbasedonitaliciitalicsubitaliceitalicsubindicatorforportfoliooptimization
AT ziluhuang italiciitalicsubitaliceitalicsublgeaalearningguidedevolutionaryalgorithmbasedonitaliciitalicsubitaliceitalicsubindicatorforportfoliooptimization
AT shuwenwang italiciitalicsubitaliceitalicsublgeaalearningguidedevolutionaryalgorithmbasedonitaliciitalicsubitaliceitalicsubindicatorforportfoliooptimization