Analysing interaction and localization dynamics in modulation instability via data-driven dominant balance

We report the first application of the Machine Learning technique of data-driven dominant balance to optical fiber noise-driven Modulation Instability, with the aim to automatically identify local regions of dispersive and nonlinear interactions governing the dynamics. We first consider the analytic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Hauptverfasser: Ermolaev Andrei V., Mabed Mehdi, Finot Christophe, Genty Goëry, Dudley John M.
Format: Artikel
Sprache:English
Veröffentlicht: EDP Sciences 2023-01-01
Schriftenreihe:EPJ Web of Conferences
Online Zugang:https://www.epj-conferences.org/articles/epjconf/pdf/2023/13/epjconf_eosam2023_13001.pdf