Replication and explorations of high-order epistasis using a large advanced intercross line pedigree.

Dissection of the genetic architecture of complex traits persists as a major challenge in biology; despite considerable efforts, much remains unclear including the role and importance of genetic interactions. This study provides empirical evidence for a strong and persistent contribution of both sec...

Full description

Bibliographic Details
Main Authors: Mats Pettersson, Francois Besnier, Paul B Siegel, Orjan Carlborg
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-07-01
Series:PLoS Genetics
Online Access:http://europepmc.org/articles/PMC3140984?pdf=render
_version_ 1819072571064188928
author Mats Pettersson
Francois Besnier
Paul B Siegel
Orjan Carlborg
author_facet Mats Pettersson
Francois Besnier
Paul B Siegel
Orjan Carlborg
author_sort Mats Pettersson
collection DOAJ
description Dissection of the genetic architecture of complex traits persists as a major challenge in biology; despite considerable efforts, much remains unclear including the role and importance of genetic interactions. This study provides empirical evidence for a strong and persistent contribution of both second- and third-order epistatic interactions to long-term selection response for body weight in two divergently selected chicken lines. We earlier reported a network of interacting loci with large effects on body weight in an F(2) intercross between these high- and low-body weight lines. Here, most pair-wise interactions in the network are replicated in an independent eight-generation advanced intercross line (AIL). The original report showed an important contribution of capacitating epistasis to growth, meaning that the genotype at a hub in the network releases the effects of one or several peripheral loci. After fine-mapping of the loci in the AIL, we show that these interactions were persistent over time. The replication of five of six originally reported epistatic loci, as well as the capacitating epistasis, provides strong empirical evidence that the originally observed epistasis is of biological importance and is a contributor in the genetic architecture of this population. The stability of genetic interaction mechanisms over time indicates a non-transient role of epistasis on phenotypic change. Third-order epistasis was for the first time examined in this study and was shown to make an important contribution to growth, which suggests that the genetic architecture of growth is more complex than can be explained by two-locus interactions only. Our results illustrate the importance of designing studies that facilitate exploration of epistasis in populations for obtaining a comprehensive understanding of the genetics underlying a complex trait.
first_indexed 2024-12-21T17:39:50Z
format Article
id doaj.art-0fca2dc5b752498f820809a269fca2a3
institution Directory Open Access Journal
issn 1553-7390
1553-7404
language English
last_indexed 2024-12-21T17:39:50Z
publishDate 2011-07-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS Genetics
spelling doaj.art-0fca2dc5b752498f820809a269fca2a32022-12-21T18:55:39ZengPublic Library of Science (PLoS)PLoS Genetics1553-73901553-74042011-07-0177e100218010.1371/journal.pgen.1002180Replication and explorations of high-order epistasis using a large advanced intercross line pedigree.Mats PetterssonFrancois BesnierPaul B SiegelOrjan CarlborgDissection of the genetic architecture of complex traits persists as a major challenge in biology; despite considerable efforts, much remains unclear including the role and importance of genetic interactions. This study provides empirical evidence for a strong and persistent contribution of both second- and third-order epistatic interactions to long-term selection response for body weight in two divergently selected chicken lines. We earlier reported a network of interacting loci with large effects on body weight in an F(2) intercross between these high- and low-body weight lines. Here, most pair-wise interactions in the network are replicated in an independent eight-generation advanced intercross line (AIL). The original report showed an important contribution of capacitating epistasis to growth, meaning that the genotype at a hub in the network releases the effects of one or several peripheral loci. After fine-mapping of the loci in the AIL, we show that these interactions were persistent over time. The replication of five of six originally reported epistatic loci, as well as the capacitating epistasis, provides strong empirical evidence that the originally observed epistasis is of biological importance and is a contributor in the genetic architecture of this population. The stability of genetic interaction mechanisms over time indicates a non-transient role of epistasis on phenotypic change. Third-order epistasis was for the first time examined in this study and was shown to make an important contribution to growth, which suggests that the genetic architecture of growth is more complex than can be explained by two-locus interactions only. Our results illustrate the importance of designing studies that facilitate exploration of epistasis in populations for obtaining a comprehensive understanding of the genetics underlying a complex trait.http://europepmc.org/articles/PMC3140984?pdf=render
spellingShingle Mats Pettersson
Francois Besnier
Paul B Siegel
Orjan Carlborg
Replication and explorations of high-order epistasis using a large advanced intercross line pedigree.
PLoS Genetics
title Replication and explorations of high-order epistasis using a large advanced intercross line pedigree.
title_full Replication and explorations of high-order epistasis using a large advanced intercross line pedigree.
title_fullStr Replication and explorations of high-order epistasis using a large advanced intercross line pedigree.
title_full_unstemmed Replication and explorations of high-order epistasis using a large advanced intercross line pedigree.
title_short Replication and explorations of high-order epistasis using a large advanced intercross line pedigree.
title_sort replication and explorations of high order epistasis using a large advanced intercross line pedigree
url http://europepmc.org/articles/PMC3140984?pdf=render
work_keys_str_mv AT matspettersson replicationandexplorationsofhighorderepistasisusingalargeadvancedintercrosslinepedigree
AT francoisbesnier replicationandexplorationsofhighorderepistasisusingalargeadvancedintercrosslinepedigree
AT paulbsiegel replicationandexplorationsofhighorderepistasisusingalargeadvancedintercrosslinepedigree
AT orjancarlborg replicationandexplorationsofhighorderepistasisusingalargeadvancedintercrosslinepedigree