The Feature of Ionospheric Mid-Latitude Trough during Geomagnetic Storms Derived from GPS Total Electron Content (TEC) Data

This study aims to investigate the features of the ionospheric mid-latitude trough over North America by using the MIT total electron content data obtained during three geomagnetic storms that occurred in August 2018, September 2017, and March 2015. The mid-latitude trough position sharply moves equ...

Full description

Bibliographic Details
Main Authors: Na Yang, Tao Yu, Huijun Le, Libo Liu, Yang-Yi Sun, Xiangxiang Yan, Jin Wang, Chunliang Xia, Xiaomin Zuo, Guangliang Huang
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/2/369
Description
Summary:This study aims to investigate the features of the ionospheric mid-latitude trough over North America by using the MIT total electron content data obtained during three geomagnetic storms that occurred in August 2018, September 2017, and March 2015. The mid-latitude trough position sharply moves equatorward from the quiet-time subauroral latitude to mid-latitude with the decrease in SYM-H during geomagnetic storms. We find that the ionospheric behavior of TEC around the mid-latitude trough position displays three kinds of ionospheric storm effect: negative ionospheric storm effect, unchanged ionospheric behavior, and positive ionospheric storm effect. These ionospheric storm effects around the mid-latitude trough position are not always produced by the mid-latitude trough. The ionospheric storm effects produced by the mid-latitude trough are limited in the narrow mid-latitude trough regions, and are transmitted to other regions with the movement of the mid-latitude trough.
ISSN:2072-4292