Linear Forest <i>mP</i><sub>3</sub> Plus a Longer Path <i>P</i><sub>n</sub> Becoming Antimagic

An edge labeling of a graph <i>G</i> is a bijection <i>f</i> from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo stretchy="false">(</mo...

Full description

Bibliographic Details
Main Authors: Jen-Ling Shang, Fei-Huang Chang
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/12/2036
_version_ 1827658711187849216
author Jen-Ling Shang
Fei-Huang Chang
author_facet Jen-Ling Shang
Fei-Huang Chang
author_sort Jen-Ling Shang
collection DOAJ
description An edge labeling of a graph <i>G</i> is a bijection <i>f</i> from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> to a set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi>E</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo>|</mo></mrow></semantics></math></inline-formula> integers. For a vertex <i>u</i> in <i>G</i>, the induced vertex sum of <i>u</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mo>+</mo></msup><mrow><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mo>+</mo></msup><mrow><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></msub><mi>f</mi><mrow><mo stretchy="false">(</mo><mi>u</mi><mi>v</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. Graph <i>G</i> is said to be antimagic if it has an edge labeling <i>g</i> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mo stretchy="false">(</mo><mi>E</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mo>|</mo><mi>E</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo>|</mo><mo stretchy="false">}</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>g</mi><mo>+</mo></msup><mrow><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo></mrow><mo>≠</mo><msup><mi>g</mi><mo>+</mo></msup><mrow><mo stretchy="false">(</mo><mi>v</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> for any pair <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>≠</mo><mi>v</mi></mrow></semantics></math></inline-formula>. A linear forest is a union of disjoint paths of orders greater than one. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><msub><mi>P</mi><mi>k</mi></msub></mrow></semantics></math></inline-formula> denote a linear forest consisting of <i>m</i> disjoint copies of path <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mi>k</mi></msub></semantics></math></inline-formula>. It is known that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><msub><mi>P</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> is antimagic if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. In this study, we add a disjoint path <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mi>n</mi></msub></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></semantics></math></inline-formula>) to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><msub><mi>P</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> and develop a necessary condition and a sufficient condition whereby the new linear forest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><msub><mi>P</mi><mn>3</mn></msub><mo>⋃</mo><msub><mi>P</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> may be antimagic.
first_indexed 2024-03-09T23:08:28Z
format Article
id doaj.art-0fd871d15e7645bca4b32734a66b21c3
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T23:08:28Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-0fd871d15e7645bca4b32734a66b21c32023-11-23T17:48:41ZengMDPI AGMathematics2227-73902022-06-011012203610.3390/math10122036Linear Forest <i>mP</i><sub>3</sub> Plus a Longer Path <i>P</i><sub>n</sub> Becoming AntimagicJen-Ling Shang0Fei-Huang Chang1Department of Marketing, Kainan University, Luzhu Dist., Taoyuan City 33857, TaiwanAcademy of Preparatory Programs for Overseas Chinese Students, National Taiwan Normal University, Linkou Dist., New Taipei City 24449, TaiwanAn edge labeling of a graph <i>G</i> is a bijection <i>f</i> from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> to a set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi>E</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo>|</mo></mrow></semantics></math></inline-formula> integers. For a vertex <i>u</i> in <i>G</i>, the induced vertex sum of <i>u</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mo>+</mo></msup><mrow><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mo>+</mo></msup><mrow><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></msub><mi>f</mi><mrow><mo stretchy="false">(</mo><mi>u</mi><mi>v</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. Graph <i>G</i> is said to be antimagic if it has an edge labeling <i>g</i> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mo stretchy="false">(</mo><mi>E</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mo>|</mo><mi>E</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo>|</mo><mo stretchy="false">}</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>g</mi><mo>+</mo></msup><mrow><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo></mrow><mo>≠</mo><msup><mi>g</mi><mo>+</mo></msup><mrow><mo stretchy="false">(</mo><mi>v</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> for any pair <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>≠</mo><mi>v</mi></mrow></semantics></math></inline-formula>. A linear forest is a union of disjoint paths of orders greater than one. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><msub><mi>P</mi><mi>k</mi></msub></mrow></semantics></math></inline-formula> denote a linear forest consisting of <i>m</i> disjoint copies of path <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mi>k</mi></msub></semantics></math></inline-formula>. It is known that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><msub><mi>P</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> is antimagic if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. In this study, we add a disjoint path <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mi>n</mi></msub></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></semantics></math></inline-formula>) to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><msub><mi>P</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> and develop a necessary condition and a sufficient condition whereby the new linear forest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><msub><mi>P</mi><mn>3</mn></msub><mo>⋃</mo><msub><mi>P</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> may be antimagic.https://www.mdpi.com/2227-7390/10/12/2036edge labelingantimagic labelingantimagic graphdisconnected antimagic graphlinear forest
spellingShingle Jen-Ling Shang
Fei-Huang Chang
Linear Forest <i>mP</i><sub>3</sub> Plus a Longer Path <i>P</i><sub>n</sub> Becoming Antimagic
Mathematics
edge labeling
antimagic labeling
antimagic graph
disconnected antimagic graph
linear forest
title Linear Forest <i>mP</i><sub>3</sub> Plus a Longer Path <i>P</i><sub>n</sub> Becoming Antimagic
title_full Linear Forest <i>mP</i><sub>3</sub> Plus a Longer Path <i>P</i><sub>n</sub> Becoming Antimagic
title_fullStr Linear Forest <i>mP</i><sub>3</sub> Plus a Longer Path <i>P</i><sub>n</sub> Becoming Antimagic
title_full_unstemmed Linear Forest <i>mP</i><sub>3</sub> Plus a Longer Path <i>P</i><sub>n</sub> Becoming Antimagic
title_short Linear Forest <i>mP</i><sub>3</sub> Plus a Longer Path <i>P</i><sub>n</sub> Becoming Antimagic
title_sort linear forest i mp i sub 3 sub plus a longer path i p i sub n sub becoming antimagic
topic edge labeling
antimagic labeling
antimagic graph
disconnected antimagic graph
linear forest
url https://www.mdpi.com/2227-7390/10/12/2036
work_keys_str_mv AT jenlingshang linearforestimpisub3subplusalongerpathipisubnsubbecomingantimagic
AT feihuangchang linearforestimpisub3subplusalongerpathipisubnsubbecomingantimagic