Enabling LVRT Compliance of Electrolyzer Systems Using Energy Storage Technologies

This paper presents a comprehensive techno-economic analysis of different energy storage systems (ESSs) in providing low-voltage ride-through (LVRT) support for power electronics-based electrolyzer systems. A framework for analyzing the performance of a grid-integrated electrolyzer-ESS system is dev...

Full description

Bibliographic Details
Main Authors: Pankaj Saha, Weihao Zhao, Daniel-Ioan Stroe, Florin Iov, Stig Munk-Nielsen
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Batteries
Subjects:
Online Access:https://www.mdpi.com/2313-0105/9/11/527
Description
Summary:This paper presents a comprehensive techno-economic analysis of different energy storage systems (ESSs) in providing low-voltage ride-through (LVRT) support for power electronics-based electrolyzer systems. A framework for analyzing the performance of a grid-integrated electrolyzer-ESS system is developed, taking into account realistic scenarios and accurate models. The system components consist of a 500 kW alkaline electrolyzer module integrated with a medium-voltage grid and three different commercially available ESSs based on Li-ion battery, Li-ion capacitor, and supercapacitor technology, respectively. The performance of these ESSs is extensively studied for three LVRT profiles, with a primary focus on the upcoming Danish grid code. In order to perform simulation studies, the system is implemented on the MATLAB<sup>®</sup>/Simulink<sup>®</sup>-PLECS<sup>®</sup> platform. The results demonstrate that all three energy storage technologies are capable of supporting the electrolyzer systems during low-voltage abnormalities in the distribution grid. The study also reveals that the supercapacitor-based technology seems to be more appropriate, from a techno-economic perspective, for fault ride-through (FRT) compliance.
ISSN:2313-0105