Choice of Smoothing Parameter for Kernel Type Ridge Estimators in Semiparametric Regression Models

This paper concerns kernel-type ridge estimators of parameters in a semiparametric model. These estimators are a generalization of the well-known Speckman’s approach based on kernel smoothing method. The most important factor in achieving this smoothing method is the selection of the smoothing para...

Full description

Bibliographic Details
Main Authors: Ersin Yilmaz, Bahadir Yuzbasi, Dursun Aydin
Format: Article
Language:English
Published: Instituto Nacional de Estatística | Statistics Portugal 2021-03-01
Series:Revstat Statistical Journal
Subjects:
Online Access:https://revstat.ine.pt/index.php/REVSTAT/article/view/331
_version_ 1828452848354983936
author Ersin Yilmaz
Bahadir Yuzbasi
Dursun Aydin
author_facet Ersin Yilmaz
Bahadir Yuzbasi
Dursun Aydin
author_sort Ersin Yilmaz
collection DOAJ
description This paper concerns kernel-type ridge estimators of parameters in a semiparametric model. These estimators are a generalization of the well-known Speckman’s approach based on kernel smoothing method. The most important factor in achieving this smoothing method is the selection of the smoothing parameter. In the literature, many selection criteria for comparing regression models have been produced. We will focus on six selection criterion improved version of Akaike information criterion (AICc), generalized cross-validation (GCV), Mallows’ Cp criterion, risk estimation using classical pilots (RECP), Bayes information criterion (BIC), and restricted maximum likelihood (REML). Real and simulated data sets are considered to illustrate the key ideas in the paper. Thus, suitable selection criterion are provided for optimum smoothing parameter selection.
first_indexed 2024-12-10T23:58:52Z
format Article
id doaj.art-0ffdb31519b34173882b466203dcb889
institution Directory Open Access Journal
issn 1645-6726
2183-0371
language English
last_indexed 2024-12-10T23:58:52Z
publishDate 2021-03-01
publisher Instituto Nacional de Estatística | Statistics Portugal
record_format Article
series Revstat Statistical Journal
spelling doaj.art-0ffdb31519b34173882b466203dcb8892022-12-22T01:28:32ZengInstituto Nacional de Estatística | Statistics PortugalRevstat Statistical Journal1645-67262183-03712021-03-0119110.57805/revstat.v19i1.331Choice of Smoothing Parameter for Kernel Type Ridge Estimators in Semiparametric Regression ModelsErsin Yilmaz 0Bahadir Yuzbasi 1Dursun Aydin 2Mugla Sitki Kocman UniversityInonu UniversityMugla Sitki Kocman University This paper concerns kernel-type ridge estimators of parameters in a semiparametric model. These estimators are a generalization of the well-known Speckman’s approach based on kernel smoothing method. The most important factor in achieving this smoothing method is the selection of the smoothing parameter. In the literature, many selection criteria for comparing regression models have been produced. We will focus on six selection criterion improved version of Akaike information criterion (AICc), generalized cross-validation (GCV), Mallows’ Cp criterion, risk estimation using classical pilots (RECP), Bayes information criterion (BIC), and restricted maximum likelihood (REML). Real and simulated data sets are considered to illustrate the key ideas in the paper. Thus, suitable selection criterion are provided for optimum smoothing parameter selection. https://revstat.ine.pt/index.php/REVSTAT/article/view/331semiparametric modelkernel smoothingridge type estimatorsmoothing parameter generalized cross-validation
spellingShingle Ersin Yilmaz
Bahadir Yuzbasi
Dursun Aydin
Choice of Smoothing Parameter for Kernel Type Ridge Estimators in Semiparametric Regression Models
Revstat Statistical Journal
semiparametric model
kernel smoothing
ridge type estimator
smoothing parameter generalized cross-validation
title Choice of Smoothing Parameter for Kernel Type Ridge Estimators in Semiparametric Regression Models
title_full Choice of Smoothing Parameter for Kernel Type Ridge Estimators in Semiparametric Regression Models
title_fullStr Choice of Smoothing Parameter for Kernel Type Ridge Estimators in Semiparametric Regression Models
title_full_unstemmed Choice of Smoothing Parameter for Kernel Type Ridge Estimators in Semiparametric Regression Models
title_short Choice of Smoothing Parameter for Kernel Type Ridge Estimators in Semiparametric Regression Models
title_sort choice of smoothing parameter for kernel type ridge estimators in semiparametric regression models
topic semiparametric model
kernel smoothing
ridge type estimator
smoothing parameter generalized cross-validation
url https://revstat.ine.pt/index.php/REVSTAT/article/view/331
work_keys_str_mv AT ersinyilmaz choiceofsmoothingparameterforkerneltyperidgeestimatorsinsemiparametricregressionmodels
AT bahadiryuzbasi choiceofsmoothingparameterforkerneltyperidgeestimatorsinsemiparametricregressionmodels
AT dursunaydin choiceofsmoothingparameterforkerneltyperidgeestimatorsinsemiparametricregressionmodels