Mathematical model of a novel small magnetorheological damper by using outer magnetic field

In order to realize small loading and small damping, a mini Magneto-rheological fluid (MRF) damper is suggested by using new method of outer coils, and its physical model is established firstly. It was found that the landing force is only 1.74∼8N, the landing force is the third-order function with t...

Full description

Bibliographic Details
Main Authors: Liutian Huang, Junhui Li, Wenhui Zhu
Format: Article
Language:English
Published: AIP Publishing LLC 2017-03-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4978866
Description
Summary:In order to realize small loading and small damping, a mini Magneto-rheological fluid (MRF) damper is suggested by using new method of outer coils, and its physical model is established firstly. It was found that the landing force is only 1.74∼8N, the landing force is the third-order function with the current by polynomial fitting of the experimental data, which shows a force-current model. The results of force-displacement and force-velocity indicate that it has nonlinear hysteretic damping characteristics. Based on the new mini-mode principle and the damping characteristics, an improved nonlinear dynamics model is proposed, and its parameter expressions are obtained by parameter identification and regression fitting. Model curves fit well with experimental curves, and the improved model has fully demonstrated the dynamic characteristics of the mini-MRF damper. It will provide scientific method and physical model for the small MRF damper development.
ISSN:2158-3226