Effect of Coolant Temperature on the Thermal Compensation of a Machine Tool
Machine tool (MT) accuracy is an important factor in the industry and is affected by heat generation through internal and external moving parts; the electrical components used; and variable environmental temperatures. Thermal errors lead to 40–60% of all MT errors. To improve MT accuracy, efficient...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-12-01
|
Series: | Machines |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1702/10/12/1201 |
_version_ | 1797456635123204096 |
---|---|
author | Swami Nath Maurya Kun-Ying Li Win-Jet Luo Shih-Ying Kao |
author_facet | Swami Nath Maurya Kun-Ying Li Win-Jet Luo Shih-Ying Kao |
author_sort | Swami Nath Maurya |
collection | DOAJ |
description | Machine tool (MT) accuracy is an important factor in the industry and is affected by heat generation through internal and external moving parts; the electrical components used; and variable environmental temperatures. Thermal errors lead to 40–60% of all MT errors. To improve MT accuracy, efficient techniques to minimize thermal errors must be identified. This study investigated the coolant temperature effects under different rotating speeds of a standalone built-in spindle system and computer numerical control (CNC) machine with a direct-drive spindle on the accuracy of thermal deformation prediction. The z-axis thermal deformation of the standalone built-in spindle system and CNC machine with a direct-drive spindle was conducted at different spindle rotating speeds and coolant temperatures at a constant coolant flow rate of 5 LPM. All experiments were conducted in a steady and dynamic operation according to ISO 230-3. For the standalone built-in spindle system, in comparison to the Mares model, the developed new model based on the coolant temperature effect on the Mares model (Mares CT model) can improve the thermal deformation prediction accuracy by 18.17% to 39.50% at different coolant temperatures of 12 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C to 26 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C and the accuracy can be controlled within the range of 0.03 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m to 5.24 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m, while the supply coolant temperature is above 16 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C. However, the thermal compensation analysis of the Mares CT model for a CNC machine with a direct-drive spindle shows a thermal deformation prediction accuracy improvement of 58.30% to 66.35% at different coolant temperatures of 22 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C to 28 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C and the accuracy can be controlled within the range of 0.14 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m to 4.05 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m. To validate the feasibility of the compensation model in real machining processes, dynamic operational analysis was performed for a standalone built-in spindle system and a CNC machine with a direct-drive spindle, and the thermal deformation prediction accuracy improved by 12.19% to 35.53% with the standalone built-in spindle system and 40.25% to 60.33% with the CNC machine with a direct-drive spindle. The compensation model analysis shows that the coolant temperature has a high impact on thermal deformation prediction and markedly affects system accuracy within certain limits. |
first_indexed | 2024-03-09T16:09:42Z |
format | Article |
id | doaj.art-10046cee32bf4471872b9f230b646d9a |
institution | Directory Open Access Journal |
issn | 2075-1702 |
language | English |
last_indexed | 2024-03-09T16:09:42Z |
publishDate | 2022-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Machines |
spelling | doaj.art-10046cee32bf4471872b9f230b646d9a2023-11-24T16:17:20ZengMDPI AGMachines2075-17022022-12-011012120110.3390/machines10121201Effect of Coolant Temperature on the Thermal Compensation of a Machine ToolSwami Nath Maurya0Kun-Ying Li1Win-Jet Luo2Shih-Ying Kao3Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, No. 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, TaiwanDepartment of Intelligent Automation Engineering, National Chin-Yi University of Technology, No. 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, TaiwanGraduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, No. 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, TaiwanDepartment of Refrigeration, Air Conditioning and Energy Engineering, National Chin-Yi University of Technology, No. 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, TaiwanMachine tool (MT) accuracy is an important factor in the industry and is affected by heat generation through internal and external moving parts; the electrical components used; and variable environmental temperatures. Thermal errors lead to 40–60% of all MT errors. To improve MT accuracy, efficient techniques to minimize thermal errors must be identified. This study investigated the coolant temperature effects under different rotating speeds of a standalone built-in spindle system and computer numerical control (CNC) machine with a direct-drive spindle on the accuracy of thermal deformation prediction. The z-axis thermal deformation of the standalone built-in spindle system and CNC machine with a direct-drive spindle was conducted at different spindle rotating speeds and coolant temperatures at a constant coolant flow rate of 5 LPM. All experiments were conducted in a steady and dynamic operation according to ISO 230-3. For the standalone built-in spindle system, in comparison to the Mares model, the developed new model based on the coolant temperature effect on the Mares model (Mares CT model) can improve the thermal deformation prediction accuracy by 18.17% to 39.50% at different coolant temperatures of 12 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C to 26 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C and the accuracy can be controlled within the range of 0.03 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m to 5.24 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m, while the supply coolant temperature is above 16 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C. However, the thermal compensation analysis of the Mares CT model for a CNC machine with a direct-drive spindle shows a thermal deformation prediction accuracy improvement of 58.30% to 66.35% at different coolant temperatures of 22 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C to 28 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C and the accuracy can be controlled within the range of 0.14 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m to 4.05 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m. To validate the feasibility of the compensation model in real machining processes, dynamic operational analysis was performed for a standalone built-in spindle system and a CNC machine with a direct-drive spindle, and the thermal deformation prediction accuracy improved by 12.19% to 35.53% with the standalone built-in spindle system and 40.25% to 60.33% with the CNC machine with a direct-drive spindle. The compensation model analysis shows that the coolant temperature has a high impact on thermal deformation prediction and markedly affects system accuracy within certain limits.https://www.mdpi.com/2075-1702/10/12/1201built-in spindledirect-drive spindlemachine toolmultiple regression analysisspindlingthermal compensation |
spellingShingle | Swami Nath Maurya Kun-Ying Li Win-Jet Luo Shih-Ying Kao Effect of Coolant Temperature on the Thermal Compensation of a Machine Tool Machines built-in spindle direct-drive spindle machine tool multiple regression analysis spindling thermal compensation |
title | Effect of Coolant Temperature on the Thermal Compensation of a Machine Tool |
title_full | Effect of Coolant Temperature on the Thermal Compensation of a Machine Tool |
title_fullStr | Effect of Coolant Temperature on the Thermal Compensation of a Machine Tool |
title_full_unstemmed | Effect of Coolant Temperature on the Thermal Compensation of a Machine Tool |
title_short | Effect of Coolant Temperature on the Thermal Compensation of a Machine Tool |
title_sort | effect of coolant temperature on the thermal compensation of a machine tool |
topic | built-in spindle direct-drive spindle machine tool multiple regression analysis spindling thermal compensation |
url | https://www.mdpi.com/2075-1702/10/12/1201 |
work_keys_str_mv | AT swaminathmaurya effectofcoolanttemperatureonthethermalcompensationofamachinetool AT kunyingli effectofcoolanttemperatureonthethermalcompensationofamachinetool AT winjetluo effectofcoolanttemperatureonthethermalcompensationofamachinetool AT shihyingkao effectofcoolanttemperatureonthethermalcompensationofamachinetool |