Resiliency and Nonlinearity Profiles of Some Cryptographic Functions

Boolean functions are important in terms of their cryptographic and combinatorial properties for different kinds of cryptosystems. The nonlinearity and resiliency of cryptographic functions are crucial criteria with respect to protection of ciphers from affine approximation and correlation attacks....

Full description

Bibliographic Details
Main Authors: Deep Singh, Amit Paul, Neerendra Kumar, Veronika Stoffová, Chaman Verma
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/23/4473
_version_ 1797462698205642752
author Deep Singh
Amit Paul
Neerendra Kumar
Veronika Stoffová
Chaman Verma
author_facet Deep Singh
Amit Paul
Neerendra Kumar
Veronika Stoffová
Chaman Verma
author_sort Deep Singh
collection DOAJ
description Boolean functions are important in terms of their cryptographic and combinatorial properties for different kinds of cryptosystems. The nonlinearity and resiliency of cryptographic functions are crucial criteria with respect to protection of ciphers from affine approximation and correlation attacks. In this article, some constructions of disjoint spectra Boolean that function by concatenating the functions on a lesser number of variables are provided. The nonlinearity and resiliency profiles of the constructed functions are obtained. From the profiles of the constructed functions, it is observed that the nonlinearity of these functions is greater than or equal to the nonlinearity of some existing functions. Furthermore, in the security analysis of cryptosystems, 4th order nonlinearity of Boolean functions play a crucial role. It provides protection against various higher order approximation attacks. The lower bounds on 4th order nonlinearity of some classes of Boolean functions having degree 5 are provided. The lower bounds of two classes of functions have form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><msubsup><mi>r</mi><mn>1</mn><mi>n</mi></msubsup><mrow><mo>(</mo><mi>λ</mi><msup><mi>x</mi><mi>d</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mi mathvariant="double-struck">F</mi><msup><mn>2</mn><mi>n</mi></msup></msub><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>∈</mo><msubsup><mi mathvariant="double-struck">F</mi><mrow><msup><mn>2</mn><mi>n</mi></msup></mrow><mo>*</mo></msubsup><mo>,</mo></mrow></semantics></math></inline-formula> where (i) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>=</mo><msup><mn>2</mn><mi>i</mi></msup><mo>+</mo><msup><mn>2</mn><mi>j</mi></msup><mo>+</mo><msup><mn>2</mn><mi>k</mi></msup><mo>+</mo><msup><mn>2</mn><mo>ℓ</mo></msup><mo>+</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>,</mo><mi>k</mi><mo>,</mo><mo>ℓ</mo></mrow></semantics></math></inline-formula> are integers such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>></mo><mi>j</mi><mo>></mo><mi>k</mi><mo>></mo><mo>ℓ</mo><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>></mo><mn>2</mn><mi>i</mi></mrow></semantics></math></inline-formula>, and (ii) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>=</mo><msup><mn>2</mn><mrow><mn>4</mn><mo>ℓ</mo></mrow></msup><mo>+</mo><msup><mn>2</mn><mrow><mn>3</mn><mo>ℓ</mo></mrow></msup><mo>+</mo><msup><mn>2</mn><mrow><mn>2</mn><mo>ℓ</mo></mrow></msup><mo>+</mo><msup><mn>2</mn><mo>ℓ</mo></msup><mo>+</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>ℓ</mo><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> is an integer with property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>gcd</mi><mo>(</mo><mo>ℓ</mo><mo>,</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>></mo><mn>8</mn></mrow></semantics></math></inline-formula> are provided. The obtained lower bounds are compared with some existing results available in the literature.
first_indexed 2024-03-09T17:40:19Z
format Article
id doaj.art-100a3df88e314641a1a6ea79f28e5283
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T17:40:19Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-100a3df88e314641a1a6ea79f28e52832023-11-24T11:34:09ZengMDPI AGMathematics2227-73902022-11-011023447310.3390/math10234473Resiliency and Nonlinearity Profiles of Some Cryptographic FunctionsDeep Singh0Amit Paul1Neerendra Kumar2Veronika Stoffová3Chaman Verma4Department of Mathematics and Statistics, Central University of Punjab, Bathinda 151401, IndiaDepartment of Mathematics, Guru Nanak Dev University, Amritsar 143005, IndiaDepartment of Computer Science and IT, Central University of Jammu, Jammu 181143, IndiaDepartment of Mathematics and Computer Science, Trnava University, 91843 Trnava, SlovakiaDepartment of Media and Educational Informatics, Faculty of Informatics, Eötvös Loránd University, 1053 Budapest, HungaryBoolean functions are important in terms of their cryptographic and combinatorial properties for different kinds of cryptosystems. The nonlinearity and resiliency of cryptographic functions are crucial criteria with respect to protection of ciphers from affine approximation and correlation attacks. In this article, some constructions of disjoint spectra Boolean that function by concatenating the functions on a lesser number of variables are provided. The nonlinearity and resiliency profiles of the constructed functions are obtained. From the profiles of the constructed functions, it is observed that the nonlinearity of these functions is greater than or equal to the nonlinearity of some existing functions. Furthermore, in the security analysis of cryptosystems, 4th order nonlinearity of Boolean functions play a crucial role. It provides protection against various higher order approximation attacks. The lower bounds on 4th order nonlinearity of some classes of Boolean functions having degree 5 are provided. The lower bounds of two classes of functions have form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><msubsup><mi>r</mi><mn>1</mn><mi>n</mi></msubsup><mrow><mo>(</mo><mi>λ</mi><msup><mi>x</mi><mi>d</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mi mathvariant="double-struck">F</mi><msup><mn>2</mn><mi>n</mi></msup></msub><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>∈</mo><msubsup><mi mathvariant="double-struck">F</mi><mrow><msup><mn>2</mn><mi>n</mi></msup></mrow><mo>*</mo></msubsup><mo>,</mo></mrow></semantics></math></inline-formula> where (i) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>=</mo><msup><mn>2</mn><mi>i</mi></msup><mo>+</mo><msup><mn>2</mn><mi>j</mi></msup><mo>+</mo><msup><mn>2</mn><mi>k</mi></msup><mo>+</mo><msup><mn>2</mn><mo>ℓ</mo></msup><mo>+</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>,</mo><mi>k</mi><mo>,</mo><mo>ℓ</mo></mrow></semantics></math></inline-formula> are integers such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>></mo><mi>j</mi><mo>></mo><mi>k</mi><mo>></mo><mo>ℓ</mo><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>></mo><mn>2</mn><mi>i</mi></mrow></semantics></math></inline-formula>, and (ii) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>=</mo><msup><mn>2</mn><mrow><mn>4</mn><mo>ℓ</mo></mrow></msup><mo>+</mo><msup><mn>2</mn><mrow><mn>3</mn><mo>ℓ</mo></mrow></msup><mo>+</mo><msup><mn>2</mn><mrow><mn>2</mn><mo>ℓ</mo></mrow></msup><mo>+</mo><msup><mn>2</mn><mo>ℓ</mo></msup><mo>+</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>ℓ</mo><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> is an integer with property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>gcd</mi><mo>(</mo><mo>ℓ</mo><mo>,</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>></mo><mn>8</mn></mrow></semantics></math></inline-formula> are provided. The obtained lower bounds are compared with some existing results available in the literature.https://www.mdpi.com/2227-7390/10/23/4473affine approximation attackBoolean functionsdisjoint spectra functionshigher order nonlinearitiesresiliencyWalsh–Hadamard transform (WHT)
spellingShingle Deep Singh
Amit Paul
Neerendra Kumar
Veronika Stoffová
Chaman Verma
Resiliency and Nonlinearity Profiles of Some Cryptographic Functions
Mathematics
affine approximation attack
Boolean functions
disjoint spectra functions
higher order nonlinearities
resiliency
Walsh–Hadamard transform (WHT)
title Resiliency and Nonlinearity Profiles of Some Cryptographic Functions
title_full Resiliency and Nonlinearity Profiles of Some Cryptographic Functions
title_fullStr Resiliency and Nonlinearity Profiles of Some Cryptographic Functions
title_full_unstemmed Resiliency and Nonlinearity Profiles of Some Cryptographic Functions
title_short Resiliency and Nonlinearity Profiles of Some Cryptographic Functions
title_sort resiliency and nonlinearity profiles of some cryptographic functions
topic affine approximation attack
Boolean functions
disjoint spectra functions
higher order nonlinearities
resiliency
Walsh–Hadamard transform (WHT)
url https://www.mdpi.com/2227-7390/10/23/4473
work_keys_str_mv AT deepsingh resiliencyandnonlinearityprofilesofsomecryptographicfunctions
AT amitpaul resiliencyandnonlinearityprofilesofsomecryptographicfunctions
AT neerendrakumar resiliencyandnonlinearityprofilesofsomecryptographicfunctions
AT veronikastoffova resiliencyandnonlinearityprofilesofsomecryptographicfunctions
AT chamanverma resiliencyandnonlinearityprofilesofsomecryptographicfunctions