Displaced calibration of PM10 measurements using spatio-temporal models

PM10 monitoring networks are equipped with heterogeneous samplers. Some of these samplers are known to underestimate true levels of concentrations (non-reference samplers). In this paper we propose a hierarchical spatio-temporal Bayesian model for the calibration of measurements recorded using non-r...

Full description

Bibliographic Details
Main Authors: Daniela Cocchi, Fedele Greco, Carlo Trivisano
Format: Article
Language:English
Published: University of Bologna 2007-12-01
Series:Statistica
Online Access:http://rivista-statistica.unibo.it/article/view/491
_version_ 1818538158562738176
author Daniela Cocchi
Fedele Greco
Carlo Trivisano
author_facet Daniela Cocchi
Fedele Greco
Carlo Trivisano
author_sort Daniela Cocchi
collection DOAJ
description PM10 monitoring networks are equipped with heterogeneous samplers. Some of these samplers are known to underestimate true levels of concentrations (non-reference samplers). In this paper we propose a hierarchical spatio-temporal Bayesian model for the calibration of measurements recorded using non-reference samplers, by borrowing strength from non co-located reference sampler measurements.
first_indexed 2024-12-11T21:25:24Z
format Article
id doaj.art-100b94900d384a36ae83a4e4c307f903
institution Directory Open Access Journal
issn 0390-590X
1973-2201
language English
last_indexed 2024-12-11T21:25:24Z
publishDate 2007-12-01
publisher University of Bologna
record_format Article
series Statistica
spelling doaj.art-100b94900d384a36ae83a4e4c307f9032022-12-22T00:50:20ZengUniversity of BolognaStatistica0390-590X1973-22012007-12-0166212713810.6092/issn.1973-2201/491478Displaced calibration of PM10 measurements using spatio-temporal modelsDaniela Cocchi0Fedele Greco1Carlo Trivisano2Alma Mater Studiorum - Università di BolognaAlma Mater Studiorum - Università di BolognaAlma Mater Studiorum - Università di BolognaPM10 monitoring networks are equipped with heterogeneous samplers. Some of these samplers are known to underestimate true levels of concentrations (non-reference samplers). In this paper we propose a hierarchical spatio-temporal Bayesian model for the calibration of measurements recorded using non-reference samplers, by borrowing strength from non co-located reference sampler measurements.http://rivista-statistica.unibo.it/article/view/491
spellingShingle Daniela Cocchi
Fedele Greco
Carlo Trivisano
Displaced calibration of PM10 measurements using spatio-temporal models
Statistica
title Displaced calibration of PM10 measurements using spatio-temporal models
title_full Displaced calibration of PM10 measurements using spatio-temporal models
title_fullStr Displaced calibration of PM10 measurements using spatio-temporal models
title_full_unstemmed Displaced calibration of PM10 measurements using spatio-temporal models
title_short Displaced calibration of PM10 measurements using spatio-temporal models
title_sort displaced calibration of pm10 measurements using spatio temporal models
url http://rivista-statistica.unibo.it/article/view/491
work_keys_str_mv AT danielacocchi displacedcalibrationofpm10measurementsusingspatiotemporalmodels
AT fedelegreco displacedcalibrationofpm10measurementsusingspatiotemporalmodels
AT carlotrivisano displacedcalibrationofpm10measurementsusingspatiotemporalmodels