Summary: | Task-oriented dialogue systems (DS) are designed to help users perform daily activities using natural language. Task-oriented DS for English language have demonstrated promising performance outcomes; however, developing such systems to support Arabic remains a challenge. This challenge is mainly due to the lack of Arabic dialogue datasets. This study introduces the first Arabic end-to-end generative model for task-oriented DS (AraConv), which uses the multi-lingual transformer model mT5 with different settings. We also present an Arabic dialogue dataset (Arabic-TOD) and used it to train and test the proposed AraConv model. The results obtained are reasonable compared to those reported in the studies of English and Chinese using the same mono-lingual settings. To avoid problems associated with a small training dataset and to improve the AraConv model’s results, we suggest joint-training, in which the model is jointly trained on Arabic dialogue data and data from one or two high-resource languages such as English and Chinese. The findings indicate the AraConv model performed better in the joint-training setting than in the mono-lingual setting. The results obtained from AraConv on the Arabic dialogue dataset provide a baseline for other researchers to build robust end-to-end Arabic task-oriented DS that can engage with complex scenarios.
|