δss-supplemented modules and rings

In this paper, we introduce the concept of δss-supplemented modules and provide the various properties of these modules. In particular, we prove that a ring R is δss-supplemented as a left module if and only if RSoc(RR){R \over {Soc\left( {_RR} \right)}} is semisimple and idempotents lift to Soc(RR)...

Full description

Bibliographic Details
Main Authors: Türkmen Burcu Nişancı, Türkmen Ergül
Format: Article
Language:English
Published: Sciendo 2020-12-01
Series:Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Subjects:
Online Access:https://doi.org/10.2478/auom-2020-0041
_version_ 1811272243771080704
author Türkmen Burcu Nişancı
Türkmen Ergül
author_facet Türkmen Burcu Nişancı
Türkmen Ergül
author_sort Türkmen Burcu Nişancı
collection DOAJ
description In this paper, we introduce the concept of δss-supplemented modules and provide the various properties of these modules. In particular, we prove that a ring R is δss-supplemented as a left module if and only if RSoc(RR){R \over {Soc\left( {_RR} \right)}} is semisimple and idempotents lift to Soc(RR) if and only if every left R-module is δss-supplemented. We define projective δss-covers and prove the rings with the property that every (simple) module has a projective δss-cover are δss-supplemented. We also study on δss-supplement submodules.
first_indexed 2024-04-12T22:36:49Z
format Article
id doaj.art-10195278b2ff451ab2db1ea8d448faf1
institution Directory Open Access Journal
issn 1844-0835
language English
last_indexed 2024-04-12T22:36:49Z
publishDate 2020-12-01
publisher Sciendo
record_format Article
series Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
spelling doaj.art-10195278b2ff451ab2db1ea8d448faf12022-12-22T03:13:50ZengSciendoAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica1844-08352020-12-0128319321610.2478/auom-2020-0041δss-supplemented modules and ringsTürkmen Burcu Nişancı0Türkmen Ergül1Amasya University, Faculty of Art and Science, Department of Mathematics, Ipekkoy, 05100, Amasya, Turkey.Amasya University, Faculty of Art and Science, Department of Mathematics, Ipekkoy, 05100, Amasya, Turkey.In this paper, we introduce the concept of δss-supplemented modules and provide the various properties of these modules. In particular, we prove that a ring R is δss-supplemented as a left module if and only if RSoc(RR){R \over {Soc\left( {_RR} \right)}} is semisimple and idempotents lift to Soc(RR) if and only if every left R-module is δss-supplemented. We define projective δss-covers and prove the rings with the property that every (simple) module has a projective δss-cover are δss-supplemented. We also study on δss-supplement submodules.https://doi.org/10.2478/auom-2020-0041semisimple modulestrongly δ-local moduleδ ss -supplemented moduleleft δ ss -perfect ringprojective δ ss-coverprimary 16d1016d60 secondary 16d99
spellingShingle Türkmen Burcu Nişancı
Türkmen Ergül
δss-supplemented modules and rings
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
semisimple module
strongly δ-local module
δ ss -supplemented module
left δ ss -perfect ring
projective δ ss-cover
primary 16d10
16d60 secondary 16d99
title δss-supplemented modules and rings
title_full δss-supplemented modules and rings
title_fullStr δss-supplemented modules and rings
title_full_unstemmed δss-supplemented modules and rings
title_short δss-supplemented modules and rings
title_sort δss supplemented modules and rings
topic semisimple module
strongly δ-local module
δ ss -supplemented module
left δ ss -perfect ring
projective δ ss-cover
primary 16d10
16d60 secondary 16d99
url https://doi.org/10.2478/auom-2020-0041
work_keys_str_mv AT turkmenburcunisancı dsssupplementedmodulesandrings
AT turkmenergul dsssupplementedmodulesandrings