(Ti,Cr)C-Based Cermets with Varied Nicr Binder Content via Elemental SHS for Perspective Cutting Tools

The effects of granulation of reactive mixtures Ti-Cr-C and Ti-Cr-C-Ni on the combustion temperature and velocity, as well as phase composition and mechanical properties (crushing ability) of combustion products, were studied. Granulation was associated with a 1.5-fold increase in combustion velocit...

Full description

Bibliographic Details
Main Authors: Stepan Vorotilo, Philipp V. Kiryukhantsev-Korneev, Boris S. Seplyarskii, Roman A. Kochetkov, Nail I. Abzalov, Ivan D. Kovalev, Tatyana G. Lisina, Alexander A. Zaitsev
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/10/5/412
Description
Summary:The effects of granulation of reactive mixtures Ti-Cr-C and Ti-Cr-C-Ni on the combustion temperature and velocity, as well as phase composition and mechanical properties (crushing ability) of combustion products, were studied. Granulation was associated with a 1.5-fold increase in combustion velocity, caused by a nearly 10-fold increase in gas permeability. Secondary reactions between TiC, Cr<sub>7</sub>C<sub>3</sub>, and molten Ni led to the formation of (Ti,Cr)C FCC solid solution and Ni<sub>2.88</sub>Cr<sub>1.12</sub> intermetallics. After the combustion of Ti-Cr-C-Ni mixtures, prolonged fluorescence was registered, suggesting the exothermic nature of secondary phase formation reactions. The introduction of the nickel binder decreased the content of Cr in the solid solution (Ti,Cr)C owing to the formation of the Ni<sub>2.88</sub>Cr<sub>1.12</sub> phase. To prevent the Cr depletion from the carbide solid solution, Ni-20%Cr binder was added to the granulated 80%(Ti + C)/20%(3Cr + 2C) mixture. Combustion of granulated mixture yielded brittle porous sinter cake, which was easy to crush and mill, whereas the combustion products from the powdered mixtures were more ductile and harder to crush.
ISSN:2073-4352