Global and Local Behavior of the System of Piecewise Linear Difference Equations <i>x</i><sub><i>n</i>+1</sub> = |<i>x</i><sub><i>n</i></sub>| − <i>y</i><sub><i>n</i></sub> − <i>b</i> and <i>y</i><sub><i>n</i>+1</sub> = <i>x</i><sub><i>n</i></sub> − |<i>y</i><sub><i>n</i></sub>| + 1 Where <i>b</i> ≥ 4

The aim of this article is to study the system of piecewise linear difference equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mrow><mi>n</mi>&...

Full description

Bibliographic Details
Main Authors: Busakorn Aiewcharoen, Ratinan Boonklurb, Nanthiya Konglawan
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/12/1390
_version_ 1797530027721490432
author Busakorn Aiewcharoen
Ratinan Boonklurb
Nanthiya Konglawan
author_facet Busakorn Aiewcharoen
Ratinan Boonklurb
Nanthiya Konglawan
author_sort Busakorn Aiewcharoen
collection DOAJ
description The aim of this article is to study the system of piecewise linear difference equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mrow><mo>|</mo><msub><mi>x</mi><mi>n</mi></msub><mo>|</mo></mrow><mo>−</mo><msub><mi>y</mi><mi>n</mi></msub><mo>−</mo><mi>b</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>x</mi><mi>n</mi></msub><mo>−</mo><mrow><mo>|</mo><msub><mi>y</mi><mi>n</mi></msub><mo>|</mo></mrow><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula>. A global behavior for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> shows that all solutions become the equilibrium point. For a large value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>x</mi><mn>0</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>y</mi><mn>0</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula>, we can prove that (i) if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>=</mo><mn>5</mn></mrow></semantics></math></inline-formula>, then the solution becomes the equilibrium point and (ii) if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>≥</mo><mn>6</mn></mrow></semantics></math></inline-formula>, then the solution becomes the periodic solution of prime period 5.
first_indexed 2024-03-10T10:23:04Z
format Article
id doaj.art-1032f4bfe456443e963d85454bcbdfb7
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T10:23:04Z
publishDate 2021-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-1032f4bfe456443e963d85454bcbdfb72023-11-22T00:11:55ZengMDPI AGMathematics2227-73902021-06-01912139010.3390/math9121390Global and Local Behavior of the System of Piecewise Linear Difference Equations <i>x</i><sub><i>n</i>+1</sub> = |<i>x</i><sub><i>n</i></sub>| − <i>y</i><sub><i>n</i></sub> − <i>b</i> and <i>y</i><sub><i>n</i>+1</sub> = <i>x</i><sub><i>n</i></sub> − |<i>y</i><sub><i>n</i></sub>| + 1 Where <i>b</i> ≥ 4Busakorn Aiewcharoen0Ratinan Boonklurb1Nanthiya Konglawan2The Demonstration School of Silpakorn University, Faculty of Education, Silpakorn University, Nakhon Pathom 73000, ThailandDepartment of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, ThailandDepartment of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, ThailandThe aim of this article is to study the system of piecewise linear difference equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mrow><mo>|</mo><msub><mi>x</mi><mi>n</mi></msub><mo>|</mo></mrow><mo>−</mo><msub><mi>y</mi><mi>n</mi></msub><mo>−</mo><mi>b</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>x</mi><mi>n</mi></msub><mo>−</mo><mrow><mo>|</mo><msub><mi>y</mi><mi>n</mi></msub><mo>|</mo></mrow><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula>. A global behavior for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> shows that all solutions become the equilibrium point. For a large value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>x</mi><mn>0</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>y</mi><mn>0</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula>, we can prove that (i) if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>=</mo><mn>5</mn></mrow></semantics></math></inline-formula>, then the solution becomes the equilibrium point and (ii) if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>≥</mo><mn>6</mn></mrow></semantics></math></inline-formula>, then the solution becomes the periodic solution of prime period 5.https://www.mdpi.com/2227-7390/9/12/1390equilibrium pointperiodic solutionsystem of piecewise linear difference equation
spellingShingle Busakorn Aiewcharoen
Ratinan Boonklurb
Nanthiya Konglawan
Global and Local Behavior of the System of Piecewise Linear Difference Equations <i>x</i><sub><i>n</i>+1</sub> = |<i>x</i><sub><i>n</i></sub>| − <i>y</i><sub><i>n</i></sub> − <i>b</i> and <i>y</i><sub><i>n</i>+1</sub> = <i>x</i><sub><i>n</i></sub> − |<i>y</i><sub><i>n</i></sub>| + 1 Where <i>b</i> ≥ 4
Mathematics
equilibrium point
periodic solution
system of piecewise linear difference equation
title Global and Local Behavior of the System of Piecewise Linear Difference Equations <i>x</i><sub><i>n</i>+1</sub> = |<i>x</i><sub><i>n</i></sub>| − <i>y</i><sub><i>n</i></sub> − <i>b</i> and <i>y</i><sub><i>n</i>+1</sub> = <i>x</i><sub><i>n</i></sub> − |<i>y</i><sub><i>n</i></sub>| + 1 Where <i>b</i> ≥ 4
title_full Global and Local Behavior of the System of Piecewise Linear Difference Equations <i>x</i><sub><i>n</i>+1</sub> = |<i>x</i><sub><i>n</i></sub>| − <i>y</i><sub><i>n</i></sub> − <i>b</i> and <i>y</i><sub><i>n</i>+1</sub> = <i>x</i><sub><i>n</i></sub> − |<i>y</i><sub><i>n</i></sub>| + 1 Where <i>b</i> ≥ 4
title_fullStr Global and Local Behavior of the System of Piecewise Linear Difference Equations <i>x</i><sub><i>n</i>+1</sub> = |<i>x</i><sub><i>n</i></sub>| − <i>y</i><sub><i>n</i></sub> − <i>b</i> and <i>y</i><sub><i>n</i>+1</sub> = <i>x</i><sub><i>n</i></sub> − |<i>y</i><sub><i>n</i></sub>| + 1 Where <i>b</i> ≥ 4
title_full_unstemmed Global and Local Behavior of the System of Piecewise Linear Difference Equations <i>x</i><sub><i>n</i>+1</sub> = |<i>x</i><sub><i>n</i></sub>| − <i>y</i><sub><i>n</i></sub> − <i>b</i> and <i>y</i><sub><i>n</i>+1</sub> = <i>x</i><sub><i>n</i></sub> − |<i>y</i><sub><i>n</i></sub>| + 1 Where <i>b</i> ≥ 4
title_short Global and Local Behavior of the System of Piecewise Linear Difference Equations <i>x</i><sub><i>n</i>+1</sub> = |<i>x</i><sub><i>n</i></sub>| − <i>y</i><sub><i>n</i></sub> − <i>b</i> and <i>y</i><sub><i>n</i>+1</sub> = <i>x</i><sub><i>n</i></sub> − |<i>y</i><sub><i>n</i></sub>| + 1 Where <i>b</i> ≥ 4
title_sort global and local behavior of the system of piecewise linear difference equations i x i sub i n i 1 sub i x i sub i n i sub i y i sub i n i sub i b i and i y i sub i n i 1 sub i x i sub i n i sub i y i sub i n i sub 1 where i b i ≥ 4
topic equilibrium point
periodic solution
system of piecewise linear difference equation
url https://www.mdpi.com/2227-7390/9/12/1390
work_keys_str_mv AT busakornaiewcharoen globalandlocalbehaviorofthesystemofpiecewiselineardifferenceequationsixisubini1subixisubinisubiyisubinisubibiandiyisubini1subixisubinisubiyisubinisub1whereibi4
AT ratinanboonklurb globalandlocalbehaviorofthesystemofpiecewiselineardifferenceequationsixisubini1subixisubinisubiyisubinisubibiandiyisubini1subixisubinisubiyisubinisub1whereibi4
AT nanthiyakonglawan globalandlocalbehaviorofthesystemofpiecewiselineardifferenceequationsixisubini1subixisubinisubiyisubinisubibiandiyisubini1subixisubinisubiyisubinisub1whereibi4