Highly loaded bimetallic iron-cobalt catalysts for hydrogen release from ammonia

Abstract Ammonia is a storage molecule for hydrogen, which can be released by catalytic decomposition. Inexpensive iron catalysts suffer from a low activity due to a too strong iron-nitrogen binding energy compared to more active metals such as ruthenium. Here, we show that this limitation can be ov...

Full description

Bibliographic Details
Main Authors: Shilong Chen, Jelena Jelic, Denise Rein, Sharif Najafishirtari, Franz-Philipp Schmidt, Frank Girgsdies, Liqun Kang, Aleksandra Wandzilak, Anna Rabe, Dmitry E. Doronkin, Jihao Wang, Klaus Friedel Ortega, Serena DeBeer, Jan-Dierk Grunwaldt, Robert Schlögl, Thomas Lunkenbein, Felix Studt, Malte Behrens
Format: Article
Language:English
Published: Nature Portfolio 2024-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-44661-6
Description
Summary:Abstract Ammonia is a storage molecule for hydrogen, which can be released by catalytic decomposition. Inexpensive iron catalysts suffer from a low activity due to a too strong iron-nitrogen binding energy compared to more active metals such as ruthenium. Here, we show that this limitation can be overcome by combining iron with cobalt resulting in a Fe-Co bimetallic catalyst. Theoretical calculations confirm a lower metal-nitrogen binding energy for the bimetallic catalyst resulting in higher activity. Operando spectroscopy reveals that the role of cobalt in the bimetallic catalyst is to suppress the bulk-nitridation of iron and to stabilize this active state. Such catalysts are obtained from Mg(Fe,Co)2O4 spinel pre-catalysts with variable Fe:Co ratios by facile co-precipitation, calcination and reduction. The resulting Fe-Co/MgO catalysts, characterized by an extraordinary high metal loading reaching 74 wt.%, combine the advantages of a ruthenium-like electronic structure with a bulk catalyst-like microstructure typical for base metal catalysts.
ISSN:2041-1723