Upgrading CO2 into acetate on Bi2O3@carbon felt integrated electrode via coupling electrocatalysis with microbial synthesis

Abstract Upgrading of atmospheric CO2 into high‐value‐added acetate using renewable electricity via electrocatalysis solely remains a great challenge. Here, inspired by microbial synthesis via biocatalysts, we present a coupled system to produce acetate from CO2 by bridging inorganic electrocatalysi...

Full description

Bibliographic Details
Main Authors: Xiaojing Liu, Kang Zhang, Yidan Sun, Shukang Zhang, Zhenyu Qiu, Tianshun Song, Jingjing Xie, Yuping Wu, Yuhui Chen
Format: Article
Language:English
Published: Wiley 2023-04-01
Series:SusMat
Subjects:
Online Access:https://doi.org/10.1002/sus2.117
Description
Summary:Abstract Upgrading of atmospheric CO2 into high‐value‐added acetate using renewable electricity via electrocatalysis solely remains a great challenge. Here, inspired by microbial synthesis via biocatalysts, we present a coupled system to produce acetate from CO2 by bridging inorganic electrocatalysis with microbial synthesis through formate intermediates. A 3D Bi2O3@CF integrated electrode with an ice‐sugar gourd shape was fabricated via a straightforward hydrothermal synthesis strategy, wherein Bi2O3 microspheres were decorated on carbon fibers. This ice‐sugar gourd‐shaped architecture endows electrodes with multiple structural advantages, including synergistic contribution, high mass transport capability, high structural stability, and large surface area. Consequently, the resultant Bi2O3@CF exhibited a maximum Faradic efficiency of 92.4% at −1.23 V versus Ag/AgCl for formate generation in 0.5 M KHCO3, exceeding that of Bi2O3/CF prepared using a conventional electrode preparation strategy. Benefiting from the high formate selectivity, unique architecture, and good biocompatibility, the Bi2O3@CF electrode attached with enriched CO2‐fixing electroautotrophs served as a biocathode. As a result, a considerable acetate yield rate of 0.269 ± 0.009 g L−1 day−1 (a total acetate yield of 3.77 ± 0.12 g L−1 during 14‐day operation) was achieved in the electrochemical–microbial system equipped with Bi2O3@CF.
ISSN:2692-4552