Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems
Plastic mulch films are used globally in crop production but incur considerable disposal and environmental pollution issues. Biodegradable plastic mulch films (BDMs), an alternative to polyethylene (PE)-based films, are designed to be tilled into the soil where they are expected to be mineralized to...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
PeerJ Inc.
2020-04-01
|
Series: | PeerJ |
Subjects: | |
Online Access: | https://peerj.com/articles/9015.pdf |
_version_ | 1827605859534897152 |
---|---|
author | Sreejata Bandopadhyay Henry Y. Sintim Jennifer M. DeBruyn |
author_facet | Sreejata Bandopadhyay Henry Y. Sintim Jennifer M. DeBruyn |
author_sort | Sreejata Bandopadhyay |
collection | DOAJ |
description | Plastic mulch films are used globally in crop production but incur considerable disposal and environmental pollution issues. Biodegradable plastic mulch films (BDMs), an alternative to polyethylene (PE)-based films, are designed to be tilled into the soil where they are expected to be mineralized to carbon dioxide, water and microbial biomass. However, insufficient research regarding the impacts of repeated soil incorporation of BDMs on soil microbial communities has partly contributed to limited adoption of BDMs. In this study, we evaluated the effects of BDM incorporation on soil microbial community structure and function over two years in two geographical locations: Knoxville, TN, and in Mount Vernon, WA, USA. Treatments included four plastic BDMs (three commercially available and one experimental film), a biodegradable cellulose paper mulch, a non-biodegradable PE mulch and a no mulch plot. Bacterial community structure determined using 16S rRNA gene amplicon sequencing revealed significant differences by location and season. Differences in bacterial communities by mulch treatment were not significant for any season in either location, except for Fall 2015 in WA where differences were observed between BDMs and no-mulch plots. Extracellular enzyme assays were used to characterize communities functionally, revealing significant differences by location and sampling season in both TN and WA but minimal differences between BDMs and PE treatments. Overall, BDMs had comparable influences on soil microbial communities to PE mulch films. |
first_indexed | 2024-03-09T06:28:31Z |
format | Article |
id | doaj.art-1052cf94c9b04a8f883572a61276d6ad |
institution | Directory Open Access Journal |
issn | 2167-8359 |
language | English |
last_indexed | 2024-03-09T06:28:31Z |
publishDate | 2020-04-01 |
publisher | PeerJ Inc. |
record_format | Article |
series | PeerJ |
spelling | doaj.art-1052cf94c9b04a8f883572a61276d6ad2023-12-03T11:10:58ZengPeerJ Inc.PeerJ2167-83592020-04-018e901510.7717/peerj.9015Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystemsSreejata Bandopadhyay0Henry Y. Sintim1Jennifer M. DeBruyn2Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States of AmericaDepartment of Crop and Soil Sciences, Washington State University, Pullman, WA, United States of AmericaDepartment of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States of AmericaPlastic mulch films are used globally in crop production but incur considerable disposal and environmental pollution issues. Biodegradable plastic mulch films (BDMs), an alternative to polyethylene (PE)-based films, are designed to be tilled into the soil where they are expected to be mineralized to carbon dioxide, water and microbial biomass. However, insufficient research regarding the impacts of repeated soil incorporation of BDMs on soil microbial communities has partly contributed to limited adoption of BDMs. In this study, we evaluated the effects of BDM incorporation on soil microbial community structure and function over two years in two geographical locations: Knoxville, TN, and in Mount Vernon, WA, USA. Treatments included four plastic BDMs (three commercially available and one experimental film), a biodegradable cellulose paper mulch, a non-biodegradable PE mulch and a no mulch plot. Bacterial community structure determined using 16S rRNA gene amplicon sequencing revealed significant differences by location and season. Differences in bacterial communities by mulch treatment were not significant for any season in either location, except for Fall 2015 in WA where differences were observed between BDMs and no-mulch plots. Extracellular enzyme assays were used to characterize communities functionally, revealing significant differences by location and sampling season in both TN and WA but minimal differences between BDMs and PE treatments. Overall, BDMs had comparable influences on soil microbial communities to PE mulch films.https://peerj.com/articles/9015.pdfBiodegradable plastic mulchPlastic mulch filmsPlasticultureVegetable agricultureSoil microbial communitiesSoil enzymes |
spellingShingle | Sreejata Bandopadhyay Henry Y. Sintim Jennifer M. DeBruyn Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems PeerJ Biodegradable plastic mulch Plastic mulch films Plasticulture Vegetable agriculture Soil microbial communities Soil enzymes |
title | Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems |
title_full | Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems |
title_fullStr | Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems |
title_full_unstemmed | Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems |
title_short | Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems |
title_sort | effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems |
topic | Biodegradable plastic mulch Plastic mulch films Plasticulture Vegetable agriculture Soil microbial communities Soil enzymes |
url | https://peerj.com/articles/9015.pdf |
work_keys_str_mv | AT sreejatabandopadhyay effectsofbiodegradableplasticfilmmulchingonsoilmicrobialcommunitiesintwoagroecosystems AT henryysintim effectsofbiodegradableplasticfilmmulchingonsoilmicrobialcommunitiesintwoagroecosystems AT jennifermdebruyn effectsofbiodegradableplasticfilmmulchingonsoilmicrobialcommunitiesintwoagroecosystems |