Correlation-boosted quantum engine: A proof-of-principle demonstration

Employing currently available quantum technology, we design and implement a nonclassically correlated SWAP heat engine that allows to achieve an efficiency above the standard Carnot limit. Such an engine also boosts the amount of extractable work, in a wider parameter window, with respect to engine&...

Full description

Bibliographic Details
Main Authors: Marcela Herrera, John H. Reina, Irene D'Amico, Roberto M. Serra
Format: Article
Language:English
Published: American Physical Society 2023-11-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.5.043104
Description
Summary:Employing currently available quantum technology, we design and implement a nonclassically correlated SWAP heat engine that allows to achieve an efficiency above the standard Carnot limit. Such an engine also boosts the amount of extractable work, in a wider parameter window, with respect to engine's cycle in the absence of initial quantum correlations in the working substance. The boosted efficiency arises from a trade-off between the entropy production and the consumption of quantum correlations during the full thermodynamic cycle. We derive a generalized second-law limit for the correlated cycle and implement a proof-of-principle demonstration of the engine efficiency enhancement by effectively tailoring the thermal engine on a cloud quantum processor.
ISSN:2643-1564