Precise determination of $$\alpha _{S}(M_Z)$$ αS(MZ) from a global fit of energy–energy correlation to NNLO+NNLL predictions
Abstract We present a comparison of the computation of energy–energy correlation in $$e^{+}e^{-}$$ e+e- collisions in the back-to-back region at next-to-next-to-leading logarithmic accuracy matched with the next-to-next-to-leading order perturbative prediction to LEP, PEP, PETRA, SLC and TRISTAN dat...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-06-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | http://link.springer.com/article/10.1140/epjc/s10052-018-5963-1 |
_version_ | 1818218480869048320 |
---|---|
author | Adam Kardos Stefan Kluth Gábor Somogyi Zoltán Tulipánt Andrii Verbytskyi |
author_facet | Adam Kardos Stefan Kluth Gábor Somogyi Zoltán Tulipánt Andrii Verbytskyi |
author_sort | Adam Kardos |
collection | DOAJ |
description | Abstract We present a comparison of the computation of energy–energy correlation in $$e^{+}e^{-}$$ e+e- collisions in the back-to-back region at next-to-next-to-leading logarithmic accuracy matched with the next-to-next-to-leading order perturbative prediction to LEP, PEP, PETRA, SLC and TRISTAN data. With these predictions we perform an extraction of the strong coupling constant taking into account non-perturbative effects modelled with Monte Carlo event generators. The final result at NNLO+NNLL precision is $$\alpha _{S}(M_{Z})= 0.11750\pm 0.00018 {\text{( } exp.)}\pm 0.00102{\text{( }hadr.)}\pm 0.00257{\text{( }ren.)}\pm 0.00078{\text{( }res.)}$$ αS(MZ)=0.11750±0.00018(exp.)±0.00102(hadr.)±0.00257(ren.)±0.00078(res.) . |
first_indexed | 2024-12-12T07:24:26Z |
format | Article |
id | doaj.art-105ab7b9a67a414887310210412b52e4 |
institution | Directory Open Access Journal |
issn | 1434-6044 1434-6052 |
language | English |
last_indexed | 2024-12-12T07:24:26Z |
publishDate | 2018-06-01 |
publisher | SpringerOpen |
record_format | Article |
series | European Physical Journal C: Particles and Fields |
spelling | doaj.art-105ab7b9a67a414887310210412b52e42022-12-22T00:33:12ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522018-06-0178611510.1140/epjc/s10052-018-5963-1Precise determination of $$\alpha _{S}(M_Z)$$ αS(MZ) from a global fit of energy–energy correlation to NNLO+NNLL predictionsAdam Kardos0Stefan Kluth1Gábor Somogyi2Zoltán Tulipánt3Andrii Verbytskyi4Institute of Physics, University of DebrecenMax-Planck-Institut für PhysikMTA-DE Particle Physics Research Group, University of DebrecenInstitute of Physics, University of DebrecenMax-Planck-Institut für PhysikAbstract We present a comparison of the computation of energy–energy correlation in $$e^{+}e^{-}$$ e+e- collisions in the back-to-back region at next-to-next-to-leading logarithmic accuracy matched with the next-to-next-to-leading order perturbative prediction to LEP, PEP, PETRA, SLC and TRISTAN data. With these predictions we perform an extraction of the strong coupling constant taking into account non-perturbative effects modelled with Monte Carlo event generators. The final result at NNLO+NNLL precision is $$\alpha _{S}(M_{Z})= 0.11750\pm 0.00018 {\text{( } exp.)}\pm 0.00102{\text{( }hadr.)}\pm 0.00257{\text{( }ren.)}\pm 0.00078{\text{( }res.)}$$ αS(MZ)=0.11750±0.00018(exp.)±0.00102(hadr.)±0.00257(ren.)±0.00078(res.) .http://link.springer.com/article/10.1140/epjc/s10052-018-5963-1 |
spellingShingle | Adam Kardos Stefan Kluth Gábor Somogyi Zoltán Tulipánt Andrii Verbytskyi Precise determination of $$\alpha _{S}(M_Z)$$ αS(MZ) from a global fit of energy–energy correlation to NNLO+NNLL predictions European Physical Journal C: Particles and Fields |
title | Precise determination of $$\alpha _{S}(M_Z)$$ αS(MZ) from a global fit of energy–energy correlation to NNLO+NNLL predictions |
title_full | Precise determination of $$\alpha _{S}(M_Z)$$ αS(MZ) from a global fit of energy–energy correlation to NNLO+NNLL predictions |
title_fullStr | Precise determination of $$\alpha _{S}(M_Z)$$ αS(MZ) from a global fit of energy–energy correlation to NNLO+NNLL predictions |
title_full_unstemmed | Precise determination of $$\alpha _{S}(M_Z)$$ αS(MZ) from a global fit of energy–energy correlation to NNLO+NNLL predictions |
title_short | Precise determination of $$\alpha _{S}(M_Z)$$ αS(MZ) from a global fit of energy–energy correlation to NNLO+NNLL predictions |
title_sort | precise determination of alpha s m z αs mz from a global fit of energy energy correlation to nnlo nnll predictions |
url | http://link.springer.com/article/10.1140/epjc/s10052-018-5963-1 |
work_keys_str_mv | AT adamkardos precisedeterminationofalphasmzasmzfromaglobalfitofenergyenergycorrelationtonnlonnllpredictions AT stefankluth precisedeterminationofalphasmzasmzfromaglobalfitofenergyenergycorrelationtonnlonnllpredictions AT gaborsomogyi precisedeterminationofalphasmzasmzfromaglobalfitofenergyenergycorrelationtonnlonnllpredictions AT zoltantulipant precisedeterminationofalphasmzasmzfromaglobalfitofenergyenergycorrelationtonnlonnllpredictions AT andriiverbytskyi precisedeterminationofalphasmzasmzfromaglobalfitofenergyenergycorrelationtonnlonnllpredictions |