Alteration in the Expression of Cytochrome P450s (CYP1A1, CYP2E1, and CYP3A11) in the Liver of Mouse Induced by Microcystin-LR

Microcystins (MCs) are cyclic heptapeptide toxins and can accumulate in the liver. Cytochrome P450s (CYPs) play an important role in the biotransformation of endogenous substances and xenobiotics in animals. It is unclear if the CYPs are affected by MCs exposure. The objective of this study was to e...

Full description

Bibliographic Details
Main Authors: Bangjun Zhang, Yang Liu, Xiaoyu Li
Format: Article
Language:English
Published: MDPI AG 2015-03-01
Series:Toxins
Subjects:
Online Access:http://www.mdpi.com/2072-6651/7/4/1102
Description
Summary:Microcystins (MCs) are cyclic heptapeptide toxins and can accumulate in the liver. Cytochrome P450s (CYPs) play an important role in the biotransformation of endogenous substances and xenobiotics in animals. It is unclear if the CYPs are affected by MCs exposure. The objective of this study was to evaluate the effects of microcystin-LR (MCLR) on cytochrome P450 isozymes (CYP1A1, CYP2E1, and CYP3A11) at mRNA level, protein content, and enzyme activity in the liver of mice the received daily, intraperitoneally, 2, 4, and 8 µg/kg body weight of MCLR for seven days. The result showed that MCLR significantly decreased ethoxyresorufin-O-deethylase (EROD) (CYP1A1) and erythromycin N-demthylase (ERND) (CYP3A11) activities and increased aniline hydroxylase (ANH) activity (CYP2E1) in the liver of mice during the period of exposure. Our findings suggest that MCLR exposure may disrupt the function of CYPs in liver, which may be partly attributed to the toxicity of MCLR in mice.
ISSN:2072-6651