Supramolecular and Macromolecular Matrix Nanocarriers for Drug Delivery in Inflammation-Associated Skin Diseases

Skin is our biggest organ. It interfaces our body with its environment. It is an efficient barrier to control the loss of water, the regulation of temperature, and infections by skin-resident and environmental pathogens. The barrier function of the skin is played by the stratum corneum (SC). It is a...

Full description

Bibliographic Details
Main Authors: Ranime Jebbawi, Séverine Fruchon, Cédric-Olivier Turrin, Muriel Blanzat, Rémy Poupot
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Pharmaceutics
Subjects:
Online Access:https://www.mdpi.com/1999-4923/12/12/1224
Description
Summary:Skin is our biggest organ. It interfaces our body with its environment. It is an efficient barrier to control the loss of water, the regulation of temperature, and infections by skin-resident and environmental pathogens. The barrier function of the skin is played by the stratum corneum (SC). It is a lipid barrier associating corneocytes (the terminally differentiated keratinocytes) and multilamellar lipid bilayers. This intricate association constitutes a very cohesive system, fully adapted to its role. One consequence of this efficient organization is the virtual impossibility for active pharmaceutical ingredients (API) to cross the SC to reach the inner layers of the skin after topical deposition. There are several ways to help a drug to cross the SC. Physical methods and chemical enhancers of permeation are a possibility. These are invasive and irritating methods. Vectorization of the drugs through nanocarriers is another way to circumvent the SC. This mini-review focuses on supramolecular and macromolecular matrices designed and implemented for skin permeation, excluding vesicular nanocarriers. Examples highlight the entrapment of anti-inflammatory API to treat inflammatory disorders of the skin.
ISSN:1999-4923