Decreased mitochondrial DNA copy number in nerve cells and the hippocampus during nicotine exposure is mediated by autophagy

Cigarette smoke is a harmful air pollutant and nicotine dependence is the essential cause of the tobacco epidemic. Since mitochondrial abnormalities are associated with substance addiction, in this work we used mitochondrial DNA (mtDNA) copy number as an indicator of mitochondrial function to invest...

Full description

Bibliographic Details
Main Authors: Hongjuan Wang, Huan Chen, Shulei Han, Yaning Fu, Yushan Tian, Yong Liu, An Wang, Hongwei Hou, Qingyuan Hu
Format: Article
Language:English
Published: Elsevier 2021-12-01
Series:Ecotoxicology and Environmental Safety
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S014765132100943X
Description
Summary:Cigarette smoke is a harmful air pollutant and nicotine dependence is the essential cause of the tobacco epidemic. Since mitochondrial abnormalities are associated with substance addiction, in this work we used mitochondrial DNA (mtDNA) copy number as an indicator of mitochondrial function to investigate whether nicotine addicts also exhibit mitochondrial abnormalities. We found significantly lower mtDNA copy number in the peripheral blood of healthy nicotine addicts than in non-smokers, indicating that long-term nicotine exposure through smoking has detrimental effects on mitochondria. We also examined the effects of nicotine on mtDNA levels in a rat conditioned place preference (CPP) model of addiction and in cultured neuron cells, which revealed that the mtDNA copy number was significantly reduced in the hippocampus of CPP rats, in human neuroblastoma SH-SY5Y cells, and in rat pheochromocytoma PC12 cells, suggesting that significantly reduced mtDNA copy number is a potential biomarker of nicotine addiction. In SH-SY5Y cells, nicotine treatment induced several mitochondrial defects, such as increased mtDNA damage, increased reactive oxygen species (ROS) levels, decreased mitochondrial membrane potential (△Ψm), and stimulation of autophagic flux via transcriptional up-regulation of several autophagy-related genes and elevated marker protein accumulation, although genes controlling mtDNA replication were unaffected. In addition, pretreatment with the autophagy inhibitor Bafilomycin A1 led to accumulation of microtubule-associated protein 1 light chain 3b-II (LC3B-II) and counteracted the nicotine-induced decrease in mtDNA copy number. These results were recapitulated in PC12 cells, which also showed significant down-regulation of the marker SQSTM1/P62, suggesting that the decrease in mtDNA copy number is mediated by autophagy. This study shows that prolonged nicotine exposure, such as that in nicotine addicts, leads to a decrease of mtDNA copy number in neurons due to enhanced induction of autophagy. Capsule: It was found that smoking or nicotine exposure decreased mtDNA copy number based on population, animal, and cell models, and these effects appear to be mediated by autophagy.
ISSN:0147-6513