Thermal Model of a Dish Stirling Cavity-Receiver

This paper presents a thermal model for a dish Stirling cavity based on the finite differences method. This model is a theoretical tool to optimize the cavity in terms of thermal efficiency. One of the main outcomes of this work is the evaluation of radiative exchange using the radiosity method; for...

Full description

Bibliographic Details
Main Authors: Rubén Gil, Carlos Monné, Nuria Bernal, Mariano Muñoz, Francisco Moreno
Format: Article
Language:English
Published: MDPI AG 2015-01-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/8/2/1042
Description
Summary:This paper presents a thermal model for a dish Stirling cavity based on the finite differences method. This model is a theoretical tool to optimize the cavity in terms of thermal efficiency. One of the main outcomes of this work is the evaluation of radiative exchange using the radiosity method; for that purpose, the view factors of all surfaces involved have been accurately calculated. Moreover, this model enables the variation of the cavity and receiver dimensions and the materials to determine the optimal cavity design. The tool has been used to study the cavity optimization regarding geometry parameters and material properties. Receiver absorptivity has been identified as the most influential property of the materials. The optimal aperture height depends on the minimum focal space.
ISSN:1996-1073