Maritime greenhouse gas emission estimation and forecasting through AIS data analytics: a case study of Tianjin port in the context of sustainable development
The escalating greenhouse gas (GHG) emissions from maritime trade present a serious environmental and biological threat. With increasing emission reduction initiatives, such as the European Union’s incorporation of the maritime sector into the emissions trading system, both challenges and opportunit...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-12-01
|
Series: | Frontiers in Marine Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fmars.2023.1308981/full |
_version_ | 1827613355588714496 |
---|---|
author | Wenxin Xie Yong Li Yang Yang Peng Wang Zhishan Wang Zhaoxuan Li Qiang Mei Yaqi Sun |
author_facet | Wenxin Xie Yong Li Yang Yang Peng Wang Zhishan Wang Zhaoxuan Li Qiang Mei Yaqi Sun |
author_sort | Wenxin Xie |
collection | DOAJ |
description | The escalating greenhouse gas (GHG) emissions from maritime trade present a serious environmental and biological threat. With increasing emission reduction initiatives, such as the European Union’s incorporation of the maritime sector into the emissions trading system, both challenges and opportunities emerge for maritime transport and associated industries. To address these concerns, this study presents a model specifically designed for estimating and projecting the spatiotemporal GHG emission inventory of ships, particularly when dealing with incomplete automatic identification system datasets. In the computational aspect of the model, various data processing techniques are employed to rectify inaccuracies arising from incomplete or erroneous AIS data, including big data cleaning, ship trajectory aggregation, multi-source spatiotemporal data fusion and missing data complementation. Utilizing a bottom-up ship dynamic approach, the model generates a high-resolution GHG emission inventory. This inventory contains key attributes such as the types of ships emitting GHGs, the locations of these emissions, the time periods during which emissions occur, and emissions. For predictive analytics, the model utilizes temporal fusion transformers equipped with the attention mechanism to accurately forecast the critical emission parameters, including emission locations, time frames, and quantities. Focusing on the sea area around Tianjin port—a region characterized by high shipping activity—this study achieves fine-grained emission source tracking via detailed emission inventory calculations. Moreover, the prediction model achieves a promising loss function of approximately 0.15 under the optimal parameter configuration, obtaining a better result than recurrent neural network (RNN) and long short-term memory network (LSTM) in the comparative experiments. The proposed method allows for a comprehensive understanding of emission patterns across diverse vessel types under various operational conditions. Coupled with the prediction results, the study offers valuable theoretical and data-driven support for formulating emission reduction strategies and optimizing resource allocation, thereby contributing to sustainable maritime transformation. |
first_indexed | 2024-03-09T08:38:30Z |
format | Article |
id | doaj.art-10a5526afa2340049a518805ef005a88 |
institution | Directory Open Access Journal |
issn | 2296-7745 |
language | English |
last_indexed | 2024-03-09T08:38:30Z |
publishDate | 2023-12-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Marine Science |
spelling | doaj.art-10a5526afa2340049a518805ef005a882023-12-02T17:34:51ZengFrontiers Media S.A.Frontiers in Marine Science2296-77452023-12-011010.3389/fmars.2023.13089811308981Maritime greenhouse gas emission estimation and forecasting through AIS data analytics: a case study of Tianjin port in the context of sustainable developmentWenxin Xie0Yong Li1Yang Yang2Peng Wang3Zhishan Wang4Zhaoxuan Li5Qiang Mei6Yaqi Sun7Faculty of Information Technology, Beijing University of Technology, Beijing, ChinaFaculty of Information Technology, Beijing University of Technology, Beijing, ChinaSchool of Geographic Science, East China Normal University, Shanghai, ChinaInstitute of Computing Technology, Chinese Academy of Sciences, Beijing, ChinaFaculty of Information Technology, Beijing University of Technology, Beijing, ChinaFaculty of Information Technology, Beijing University of Technology, Beijing, ChinaNavigation Institute, Jimei University, Xiamen, ChinaFaculty of Information Technology, Beijing University of Technology, Beijing, ChinaThe escalating greenhouse gas (GHG) emissions from maritime trade present a serious environmental and biological threat. With increasing emission reduction initiatives, such as the European Union’s incorporation of the maritime sector into the emissions trading system, both challenges and opportunities emerge for maritime transport and associated industries. To address these concerns, this study presents a model specifically designed for estimating and projecting the spatiotemporal GHG emission inventory of ships, particularly when dealing with incomplete automatic identification system datasets. In the computational aspect of the model, various data processing techniques are employed to rectify inaccuracies arising from incomplete or erroneous AIS data, including big data cleaning, ship trajectory aggregation, multi-source spatiotemporal data fusion and missing data complementation. Utilizing a bottom-up ship dynamic approach, the model generates a high-resolution GHG emission inventory. This inventory contains key attributes such as the types of ships emitting GHGs, the locations of these emissions, the time periods during which emissions occur, and emissions. For predictive analytics, the model utilizes temporal fusion transformers equipped with the attention mechanism to accurately forecast the critical emission parameters, including emission locations, time frames, and quantities. Focusing on the sea area around Tianjin port—a region characterized by high shipping activity—this study achieves fine-grained emission source tracking via detailed emission inventory calculations. Moreover, the prediction model achieves a promising loss function of approximately 0.15 under the optimal parameter configuration, obtaining a better result than recurrent neural network (RNN) and long short-term memory network (LSTM) in the comparative experiments. The proposed method allows for a comprehensive understanding of emission patterns across diverse vessel types under various operational conditions. Coupled with the prediction results, the study offers valuable theoretical and data-driven support for formulating emission reduction strategies and optimizing resource allocation, thereby contributing to sustainable maritime transformation.https://www.frontiersin.org/articles/10.3389/fmars.2023.1308981/fullgreenhouse gasemission inventoryAIStransformeremission prediction |
spellingShingle | Wenxin Xie Yong Li Yang Yang Peng Wang Zhishan Wang Zhaoxuan Li Qiang Mei Yaqi Sun Maritime greenhouse gas emission estimation and forecasting through AIS data analytics: a case study of Tianjin port in the context of sustainable development Frontiers in Marine Science greenhouse gas emission inventory AIS transformer emission prediction |
title | Maritime greenhouse gas emission estimation and forecasting through AIS data analytics: a case study of Tianjin port in the context of sustainable development |
title_full | Maritime greenhouse gas emission estimation and forecasting through AIS data analytics: a case study of Tianjin port in the context of sustainable development |
title_fullStr | Maritime greenhouse gas emission estimation and forecasting through AIS data analytics: a case study of Tianjin port in the context of sustainable development |
title_full_unstemmed | Maritime greenhouse gas emission estimation and forecasting through AIS data analytics: a case study of Tianjin port in the context of sustainable development |
title_short | Maritime greenhouse gas emission estimation and forecasting through AIS data analytics: a case study of Tianjin port in the context of sustainable development |
title_sort | maritime greenhouse gas emission estimation and forecasting through ais data analytics a case study of tianjin port in the context of sustainable development |
topic | greenhouse gas emission inventory AIS transformer emission prediction |
url | https://www.frontiersin.org/articles/10.3389/fmars.2023.1308981/full |
work_keys_str_mv | AT wenxinxie maritimegreenhousegasemissionestimationandforecastingthroughaisdataanalyticsacasestudyoftianjinportinthecontextofsustainabledevelopment AT yongli maritimegreenhousegasemissionestimationandforecastingthroughaisdataanalyticsacasestudyoftianjinportinthecontextofsustainabledevelopment AT yangyang maritimegreenhousegasemissionestimationandforecastingthroughaisdataanalyticsacasestudyoftianjinportinthecontextofsustainabledevelopment AT pengwang maritimegreenhousegasemissionestimationandforecastingthroughaisdataanalyticsacasestudyoftianjinportinthecontextofsustainabledevelopment AT zhishanwang maritimegreenhousegasemissionestimationandforecastingthroughaisdataanalyticsacasestudyoftianjinportinthecontextofsustainabledevelopment AT zhaoxuanli maritimegreenhousegasemissionestimationandforecastingthroughaisdataanalyticsacasestudyoftianjinportinthecontextofsustainabledevelopment AT qiangmei maritimegreenhousegasemissionestimationandforecastingthroughaisdataanalyticsacasestudyoftianjinportinthecontextofsustainabledevelopment AT yaqisun maritimegreenhousegasemissionestimationandforecastingthroughaisdataanalyticsacasestudyoftianjinportinthecontextofsustainabledevelopment |