Exact formulas for the moments of the first passage time of reward processes

Let {Zρ(t), t ≥ 0} be a reward process based on a semi-Markov process {J (t), t ≥ 0} and a reward function ρ. Let Tz be the first passage time of {Zρ(t), t ≥ 0} from Zρ(0) = 0 to a prespecified level z. In this article we provide the Laplace transform of the E[T k z ] and obtain the exact formulas...

Full description

Bibliographic Details
Main Author: G.A. Parham
Format: Article
Language:English
Published: Instituto Nacional de Estatística | Statistics Portugal 2005-06-01
Series:Revstat Statistical Journal
Subjects:
Online Access:https://revstat.ine.pt/index.php/REVSTAT/article/view/17
_version_ 1817997000461778944
author G.A. Parham
author_facet G.A. Parham
author_sort G.A. Parham
collection DOAJ
description Let {Zρ(t), t ≥ 0} be a reward process based on a semi-Markov process {J (t), t ≥ 0} and a reward function ρ. Let Tz be the first passage time of {Zρ(t), t ≥ 0} from Zρ(0) = 0 to a prespecified level z. In this article we provide the Laplace transform of the E[T k z ] and obtain the exact formulas for ETz, ET 2 z and var(Tz). Formulas for certain type I counter models are given.
first_indexed 2024-04-14T02:31:47Z
format Article
id doaj.art-10b299d8fca74e91a018345e260fbb2b
institution Directory Open Access Journal
issn 1645-6726
2183-0371
language English
last_indexed 2024-04-14T02:31:47Z
publishDate 2005-06-01
publisher Instituto Nacional de Estatística | Statistics Portugal
record_format Article
series Revstat Statistical Journal
spelling doaj.art-10b299d8fca74e91a018345e260fbb2b2022-12-22T02:17:39ZengInstituto Nacional de Estatística | Statistics PortugalRevstat Statistical Journal1645-67262183-03712005-06-013110.57805/revstat.v3i1.17Exact formulas for the moments of the first passage time of reward processesG.A. Parham0Shahid Chamran University Let {Zρ(t), t ≥ 0} be a reward process based on a semi-Markov process {J (t), t ≥ 0} and a reward function ρ. Let Tz be the first passage time of {Zρ(t), t ≥ 0} from Zρ(0) = 0 to a prespecified level z. In this article we provide the Laplace transform of the E[T k z ] and obtain the exact formulas for ETz, ET 2 z and var(Tz). Formulas for certain type I counter models are given. https://revstat.ine.pt/index.php/REVSTAT/article/view/17semi-Markov processreward processLaplace transformfirst passage time
spellingShingle G.A. Parham
Exact formulas for the moments of the first passage time of reward processes
Revstat Statistical Journal
semi-Markov process
reward process
Laplace transform
first passage time
title Exact formulas for the moments of the first passage time of reward processes
title_full Exact formulas for the moments of the first passage time of reward processes
title_fullStr Exact formulas for the moments of the first passage time of reward processes
title_full_unstemmed Exact formulas for the moments of the first passage time of reward processes
title_short Exact formulas for the moments of the first passage time of reward processes
title_sort exact formulas for the moments of the first passage time of reward processes
topic semi-Markov process
reward process
Laplace transform
first passage time
url https://revstat.ine.pt/index.php/REVSTAT/article/view/17
work_keys_str_mv AT gaparham exactformulasforthemomentsofthefirstpassagetimeofrewardprocesses