Summary: | Abstract Background Cytoplasmic sex allocation distorters, which arise from cytonuclear conflict over the optimal investment into male versus female reproductive function, are some of the best-researched examples for genomic conflict. Among hermaphrodites, many such distorters have been found in plants, while, to our knowledge, none have been clearly documented in animals. Methods Here we provide a quantitative test for cytonuclear conflict over sex allocation in the simultaneously hermaphroditic flatworm Macrostomum lignano. We used a quantitative genetic breeding design, employing pair-wise crosses of 2 × 15 independent inbred lines, to partition the phenotypic variance in several traits (including sex allocation) into its nuclear and cytoplasmic components. Results Although the nuclear genetic background had a significant effect on all traits analyzed, we found significant cytoplasmic genetic variation only for ovary size, there explaining just 4.1% of the variance. A subsequent statistical power analysis showed that the experimental design had considerable power to detect cytonuclear interactions. Conclusion We conclude that there were no strong effects of cytonuclear conflict in the studied populations, possibly because the usually compact mitochondrial genomes in animals have a lower evolvability than the large mitochondrial genomes in plants or because the sampled populations currently do not harbor variation at putative distorter and/or the restorer loci.
|