Baire property in product spaces

We show that if a product space $\mathit\Pi$ has countable cellularity, then a dense subspace $X$ of $\mathit\Pi$ is Baire provided that all projections of $X$ to countable subproducts of $\mathit\Pi$ are Baire. It follows that if $X_i$ is a dense Baire subspace of a product of spaces having countab...

Full description

Bibliographic Details
Main Authors: Constancio Hernández, Leonardo Rodríguez Medina, Mikhail G. Tkachenko
Format: Article
Language:English
Published: Universitat Politècnica de València 2015-02-01
Series:Applied General Topology
Subjects:
Online Access:http://polipapers.upv.es/index.php/AGT/article/view/3439
_version_ 1819239076593664000
author Constancio Hernández
Leonardo Rodríguez Medina
Mikhail G. Tkachenko
author_facet Constancio Hernández
Leonardo Rodríguez Medina
Mikhail G. Tkachenko
author_sort Constancio Hernández
collection DOAJ
description We show that if a product space $\mathit\Pi$ has countable cellularity, then a dense subspace $X$ of $\mathit\Pi$ is Baire provided that all projections of $X$ to countable subproducts of $\mathit\Pi$ are Baire. It follows that if $X_i$ is a dense Baire subspace of a product of spaces having countable $\pi$-weight, for each $i\in I$, then the product space $\prod_{i\in I} X_i$ is Baire. It is also shown that the product of precompact Baire paratopological groups is again a precompact Baire paratopological group. Finally, we focus attention on the so-called \textit{strongly Baire} spaces and prove that some Baire spaces are in fact strongly Baire.
first_indexed 2024-12-23T13:46:22Z
format Article
id doaj.art-10b7a84dabfb43239ccce0c54b99ce0e
institution Directory Open Access Journal
issn 1576-9402
1989-4147
language English
last_indexed 2024-12-23T13:46:22Z
publishDate 2015-02-01
publisher Universitat Politècnica de València
record_format Article
series Applied General Topology
spelling doaj.art-10b7a84dabfb43239ccce0c54b99ce0e2022-12-21T17:44:42ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472015-02-0116111310.4995/agt.2015.34392830Baire property in product spacesConstancio Hernández0Leonardo Rodríguez Medina1Mikhail G. Tkachenko2Universidad Autónoma MetropolitanaUniversidad Autónoma MetropolitanaUniversidad Autónoma MetropolitanaWe show that if a product space $\mathit\Pi$ has countable cellularity, then a dense subspace $X$ of $\mathit\Pi$ is Baire provided that all projections of $X$ to countable subproducts of $\mathit\Pi$ are Baire. It follows that if $X_i$ is a dense Baire subspace of a product of spaces having countable $\pi$-weight, for each $i\in I$, then the product space $\prod_{i\in I} X_i$ is Baire. It is also shown that the product of precompact Baire paratopological groups is again a precompact Baire paratopological group. Finally, we focus attention on the so-called \textit{strongly Baire} spaces and prove that some Baire spaces are in fact strongly Baire.http://polipapers.upv.es/index.php/AGT/article/view/3439Baire spacestrongly Baire spaceskeletal mappingBanach-Mazur-Choquet gameparatopological groupsemitopological group.
spellingShingle Constancio Hernández
Leonardo Rodríguez Medina
Mikhail G. Tkachenko
Baire property in product spaces
Applied General Topology
Baire space
strongly Baire space
skeletal mapping
Banach-Mazur-Choquet game
paratopological group
semitopological group.
title Baire property in product spaces
title_full Baire property in product spaces
title_fullStr Baire property in product spaces
title_full_unstemmed Baire property in product spaces
title_short Baire property in product spaces
title_sort baire property in product spaces
topic Baire space
strongly Baire space
skeletal mapping
Banach-Mazur-Choquet game
paratopological group
semitopological group.
url http://polipapers.upv.es/index.php/AGT/article/view/3439
work_keys_str_mv AT constanciohernandez bairepropertyinproductspaces
AT leonardorodriguezmedina bairepropertyinproductspaces
AT mikhailgtkachenko bairepropertyinproductspaces