Baire property in product spaces
We show that if a product space $\mathit\Pi$ has countable cellularity, then a dense subspace $X$ of $\mathit\Pi$ is Baire provided that all projections of $X$ to countable subproducts of $\mathit\Pi$ are Baire. It follows that if $X_i$ is a dense Baire subspace of a product of spaces having countab...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitat Politècnica de València
2015-02-01
|
Series: | Applied General Topology |
Subjects: | |
Online Access: | http://polipapers.upv.es/index.php/AGT/article/view/3439 |
_version_ | 1819239076593664000 |
---|---|
author | Constancio Hernández Leonardo Rodríguez Medina Mikhail G. Tkachenko |
author_facet | Constancio Hernández Leonardo Rodríguez Medina Mikhail G. Tkachenko |
author_sort | Constancio Hernández |
collection | DOAJ |
description | We show that if a product space $\mathit\Pi$ has countable cellularity, then a dense subspace $X$ of $\mathit\Pi$ is Baire provided that all projections of $X$ to countable subproducts of $\mathit\Pi$ are Baire. It follows that if $X_i$ is a dense Baire subspace of a product of spaces having countable $\pi$-weight, for each $i\in I$, then the product space $\prod_{i\in I} X_i$ is Baire. It is also shown that the product of precompact Baire paratopological groups is again a precompact Baire paratopological group. Finally, we focus attention on the so-called \textit{strongly Baire} spaces and prove that some Baire spaces are in fact strongly Baire. |
first_indexed | 2024-12-23T13:46:22Z |
format | Article |
id | doaj.art-10b7a84dabfb43239ccce0c54b99ce0e |
institution | Directory Open Access Journal |
issn | 1576-9402 1989-4147 |
language | English |
last_indexed | 2024-12-23T13:46:22Z |
publishDate | 2015-02-01 |
publisher | Universitat Politècnica de València |
record_format | Article |
series | Applied General Topology |
spelling | doaj.art-10b7a84dabfb43239ccce0c54b99ce0e2022-12-21T17:44:42ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472015-02-0116111310.4995/agt.2015.34392830Baire property in product spacesConstancio Hernández0Leonardo Rodríguez Medina1Mikhail G. Tkachenko2Universidad Autónoma MetropolitanaUniversidad Autónoma MetropolitanaUniversidad Autónoma MetropolitanaWe show that if a product space $\mathit\Pi$ has countable cellularity, then a dense subspace $X$ of $\mathit\Pi$ is Baire provided that all projections of $X$ to countable subproducts of $\mathit\Pi$ are Baire. It follows that if $X_i$ is a dense Baire subspace of a product of spaces having countable $\pi$-weight, for each $i\in I$, then the product space $\prod_{i\in I} X_i$ is Baire. It is also shown that the product of precompact Baire paratopological groups is again a precompact Baire paratopological group. Finally, we focus attention on the so-called \textit{strongly Baire} spaces and prove that some Baire spaces are in fact strongly Baire.http://polipapers.upv.es/index.php/AGT/article/view/3439Baire spacestrongly Baire spaceskeletal mappingBanach-Mazur-Choquet gameparatopological groupsemitopological group. |
spellingShingle | Constancio Hernández Leonardo Rodríguez Medina Mikhail G. Tkachenko Baire property in product spaces Applied General Topology Baire space strongly Baire space skeletal mapping Banach-Mazur-Choquet game paratopological group semitopological group. |
title | Baire property in product spaces |
title_full | Baire property in product spaces |
title_fullStr | Baire property in product spaces |
title_full_unstemmed | Baire property in product spaces |
title_short | Baire property in product spaces |
title_sort | baire property in product spaces |
topic | Baire space strongly Baire space skeletal mapping Banach-Mazur-Choquet game paratopological group semitopological group. |
url | http://polipapers.upv.es/index.php/AGT/article/view/3439 |
work_keys_str_mv | AT constanciohernandez bairepropertyinproductspaces AT leonardorodriguezmedina bairepropertyinproductspaces AT mikhailgtkachenko bairepropertyinproductspaces |