Analysis of Solutions, Asymptotic and Exact Profiles to an Eyring–Powell Fluid Modell

The aim of this article was to provide analytical and numerical approaches to a one-dimensional Eyring–Powell flow. First of all, the regularity, existence, and uniqueness of the solutions were explored making use of a variational weak formulation. Then, the Eyring–Powell equation was transformed in...

Full description

Bibliographic Details
Main Authors: José Luis Díaz, Saeed Ur Rahman, Juan Carlos Sánchez Rodríguez, María Antonia Simón Rodríguez, Guillermo Filippone Capllonch, Antonio Herrero Hernández
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/4/660
_version_ 1827654129515757568
author José Luis Díaz
Saeed Ur Rahman
Juan Carlos Sánchez Rodríguez
María Antonia Simón Rodríguez
Guillermo Filippone Capllonch
Antonio Herrero Hernández
author_facet José Luis Díaz
Saeed Ur Rahman
Juan Carlos Sánchez Rodríguez
María Antonia Simón Rodríguez
Guillermo Filippone Capllonch
Antonio Herrero Hernández
author_sort José Luis Díaz
collection DOAJ
description The aim of this article was to provide analytical and numerical approaches to a one-dimensional Eyring–Powell flow. First of all, the regularity, existence, and uniqueness of the solutions were explored making use of a variational weak formulation. Then, the Eyring–Powell equation was transformed into the travelling wave domain, where analytical solutions were obtained supported by the geometric perturbation theory. Such analytical solutions were validated with a numerical exercise. The main finding reported is the existence of a particular travelling wave speed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>=</mo><mn>1.212</mn></mrow></semantics></math></inline-formula> for which the analytical solution is close to the actual numerical solution with an accumulative error of <<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>.
first_indexed 2024-03-09T21:30:09Z
format Article
id doaj.art-10b94a30e46e4e05a9448ae00bf4c6ee
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T21:30:09Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-10b94a30e46e4e05a9448ae00bf4c6ee2023-11-23T20:58:12ZengMDPI AGMathematics2227-73902022-02-0110466010.3390/math10040660Analysis of Solutions, Asymptotic and Exact Profiles to an Eyring–Powell Fluid ModellJosé Luis Díaz0Saeed Ur Rahman1Juan Carlos Sánchez Rodríguez2María Antonia Simón Rodríguez3Guillermo Filippone Capllonch4Antonio Herrero Hernández5Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1800, Pozuelo de Alarcón, 28223 Madrid, SpainDepartment of Mathematics, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, PakistanEscuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1800, Pozuelo de Alarcón, 28223 Madrid, SpainEscuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1800, Pozuelo de Alarcón, 28223 Madrid, SpainEscuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1800, Pozuelo de Alarcón, 28223 Madrid, SpainEscuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1800, Pozuelo de Alarcón, 28223 Madrid, SpainThe aim of this article was to provide analytical and numerical approaches to a one-dimensional Eyring–Powell flow. First of all, the regularity, existence, and uniqueness of the solutions were explored making use of a variational weak formulation. Then, the Eyring–Powell equation was transformed into the travelling wave domain, where analytical solutions were obtained supported by the geometric perturbation theory. Such analytical solutions were validated with a numerical exercise. The main finding reported is the existence of a particular travelling wave speed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>=</mo><mn>1.212</mn></mrow></semantics></math></inline-formula> for which the analytical solution is close to the actual numerical solution with an accumulative error of <<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/10/4/660travelling wavesEyring–Powellgeometric perturbationnonlinear reaction–diffusionunsteady flow
spellingShingle José Luis Díaz
Saeed Ur Rahman
Juan Carlos Sánchez Rodríguez
María Antonia Simón Rodríguez
Guillermo Filippone Capllonch
Antonio Herrero Hernández
Analysis of Solutions, Asymptotic and Exact Profiles to an Eyring–Powell Fluid Modell
Mathematics
travelling waves
Eyring–Powell
geometric perturbation
nonlinear reaction–diffusion
unsteady flow
title Analysis of Solutions, Asymptotic and Exact Profiles to an Eyring–Powell Fluid Modell
title_full Analysis of Solutions, Asymptotic and Exact Profiles to an Eyring–Powell Fluid Modell
title_fullStr Analysis of Solutions, Asymptotic and Exact Profiles to an Eyring–Powell Fluid Modell
title_full_unstemmed Analysis of Solutions, Asymptotic and Exact Profiles to an Eyring–Powell Fluid Modell
title_short Analysis of Solutions, Asymptotic and Exact Profiles to an Eyring–Powell Fluid Modell
title_sort analysis of solutions asymptotic and exact profiles to an eyring powell fluid modell
topic travelling waves
Eyring–Powell
geometric perturbation
nonlinear reaction–diffusion
unsteady flow
url https://www.mdpi.com/2227-7390/10/4/660
work_keys_str_mv AT joseluisdiaz analysisofsolutionsasymptoticandexactprofilestoaneyringpowellfluidmodell
AT saeedurrahman analysisofsolutionsasymptoticandexactprofilestoaneyringpowellfluidmodell
AT juancarlossanchezrodriguez analysisofsolutionsasymptoticandexactprofilestoaneyringpowellfluidmodell
AT mariaantoniasimonrodriguez analysisofsolutionsasymptoticandexactprofilestoaneyringpowellfluidmodell
AT guillermofilipponecapllonch analysisofsolutionsasymptoticandexactprofilestoaneyringpowellfluidmodell
AT antonioherrerohernandez analysisofsolutionsasymptoticandexactprofilestoaneyringpowellfluidmodell