A class of strongly close-to-convex functions

In this paper, we study a class of strongly close-to-convex functions $f(z)$ analytic in the unit disk $\mathbb{U}$ with $f(0)=0,f^{\prime }(0)=1$ satisfying for some convex function $g(z)$ the condition that \begin{equation*} \frac{zf^{\prime }(z)}{g(z)}\prec \left( \frac{1+Az}{1+Bz}\right)...

Full description

Bibliographic Details
Main Authors: R. K. Raina, Poonam Sharma, Janusz Sokol
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2019-05-01
Series:Boletim da Sociedade Paranaense de Matemática
Online Access:https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/38464
_version_ 1797633470697046016
author R. K. Raina
Poonam Sharma
Janusz Sokol
author_facet R. K. Raina
Poonam Sharma
Janusz Sokol
author_sort R. K. Raina
collection DOAJ
description In this paper, we study a class of strongly close-to-convex functions $f(z)$ analytic in the unit disk $\mathbb{U}$ with $f(0)=0,f^{\prime }(0)=1$ satisfying for some convex function $g(z)$ the condition that \begin{equation*} \frac{zf^{\prime }(z)}{g(z)}\prec \left( \frac{1+Az}{1+Bz}\right) ^{m} \end{equation*}% \begin{equation*} \left( -1\leq A\leq 1,-1\leq B\leq 1\ \left( A\neq B\right) ,0<m\leq 1;z\in \mathbb{U}\right) . \end{equation*}% We obtain for functions belonging to this class, the coefficient estimates, bounds, certain results based on an integral operator and radius of convexity. We also deduce a number of useful special cases and consequences of the various results which are presented in this paper.  
first_indexed 2024-03-11T11:54:28Z
format Article
id doaj.art-10c43ab1b19a4069a379682cf46e7822
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-03-11T11:54:28Z
publishDate 2019-05-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-10c43ab1b19a4069a379682cf46e78222023-11-08T20:07:21ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882019-05-0138610.5269/bspm.v38i6.38464A class of strongly close-to-convex functionsR. K. Raina0Poonam Sharma1Janusz Sokol2M.P. University of Agriculture and TechnologyUniversity of Lucknow Department of Mathematics & AstronomyUniversity of Rzeszów Faculty of Mathematics and Natural Sciences In this paper, we study a class of strongly close-to-convex functions $f(z)$ analytic in the unit disk $\mathbb{U}$ with $f(0)=0,f^{\prime }(0)=1$ satisfying for some convex function $g(z)$ the condition that \begin{equation*} \frac{zf^{\prime }(z)}{g(z)}\prec \left( \frac{1+Az}{1+Bz}\right) ^{m} \end{equation*}% \begin{equation*} \left( -1\leq A\leq 1,-1\leq B\leq 1\ \left( A\neq B\right) ,0<m\leq 1;z\in \mathbb{U}\right) . \end{equation*}% We obtain for functions belonging to this class, the coefficient estimates, bounds, certain results based on an integral operator and radius of convexity. We also deduce a number of useful special cases and consequences of the various results which are presented in this paper.   https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/38464
spellingShingle R. K. Raina
Poonam Sharma
Janusz Sokol
A class of strongly close-to-convex functions
Boletim da Sociedade Paranaense de Matemática
title A class of strongly close-to-convex functions
title_full A class of strongly close-to-convex functions
title_fullStr A class of strongly close-to-convex functions
title_full_unstemmed A class of strongly close-to-convex functions
title_short A class of strongly close-to-convex functions
title_sort class of strongly close to convex functions
url https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/38464
work_keys_str_mv AT rkraina aclassofstronglyclosetoconvexfunctions
AT poonamsharma aclassofstronglyclosetoconvexfunctions
AT januszsokol aclassofstronglyclosetoconvexfunctions
AT rkraina classofstronglyclosetoconvexfunctions
AT poonamsharma classofstronglyclosetoconvexfunctions
AT januszsokol classofstronglyclosetoconvexfunctions