Stratospheric water vapor affecting atmospheric circulation
Abstract Water vapor plays an important role in many aspects of the climate system, by affecting radiation, cloud formation, atmospheric chemistry and dynamics. Even the low stratospheric water vapor content provides an important climate feedback, but current climate models show a substantial moist...
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-07-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-023-39559-2 |
_version_ | 1797784536220696576 |
---|---|
author | Edward Charlesworth Felix Plöger Thomas Birner Rasul Baikhadzhaev Marta Abalos Nathan Luke Abraham Hideharu Akiyoshi Slimane Bekki Fraser Dennison Patrick Jöckel James Keeble Doug Kinnison Olaf Morgenstern David Plummer Eugene Rozanov Sarah Strode Guang Zeng Tatiana Egorova Martin Riese |
author_facet | Edward Charlesworth Felix Plöger Thomas Birner Rasul Baikhadzhaev Marta Abalos Nathan Luke Abraham Hideharu Akiyoshi Slimane Bekki Fraser Dennison Patrick Jöckel James Keeble Doug Kinnison Olaf Morgenstern David Plummer Eugene Rozanov Sarah Strode Guang Zeng Tatiana Egorova Martin Riese |
author_sort | Edward Charlesworth |
collection | DOAJ |
description | Abstract Water vapor plays an important role in many aspects of the climate system, by affecting radiation, cloud formation, atmospheric chemistry and dynamics. Even the low stratospheric water vapor content provides an important climate feedback, but current climate models show a substantial moist bias in the lowermost stratosphere. Here we report crucial sensitivity of the atmospheric circulation in the stratosphere and troposphere to the abundance of water vapor in the lowermost stratosphere. We show from a mechanistic climate model experiment and inter-model variability that lowermost stratospheric water vapor decreases local temperatures, and thereby causes an upward and poleward shift of subtropical jets, a strengthening of the stratospheric circulation, a poleward shift of the tropospheric eddy-driven jet and regional climate impacts. The mechanistic model experiment in combination with atmospheric observations further shows that the prevailing moist bias in current models is likely caused by the transport scheme, and can be alleviated by employing a less diffusive Lagrangian scheme. The related effects on atmospheric circulation are of similar magnitude as climate change effects. Hence, lowermost stratospheric water vapor exerts a first order effect on atmospheric circulation and improving its representation in models offers promising prospects for future research. |
first_indexed | 2024-03-13T00:41:18Z |
format | Article |
id | doaj.art-10d2d20fdf7b4ac0bb3ae3f45f6776d5 |
institution | Directory Open Access Journal |
issn | 2041-1723 |
language | English |
last_indexed | 2024-03-13T00:41:18Z |
publishDate | 2023-07-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Nature Communications |
spelling | doaj.art-10d2d20fdf7b4ac0bb3ae3f45f6776d52023-07-09T11:18:12ZengNature PortfolioNature Communications2041-17232023-07-011411910.1038/s41467-023-39559-2Stratospheric water vapor affecting atmospheric circulationEdward Charlesworth0Felix Plöger1Thomas Birner2Rasul Baikhadzhaev3Marta Abalos4Nathan Luke Abraham5Hideharu Akiyoshi6Slimane Bekki7Fraser Dennison8Patrick Jöckel9James Keeble10Doug Kinnison11Olaf Morgenstern12David Plummer13Eugene Rozanov14Sarah Strode15Guang Zeng16Tatiana Egorova17Martin Riese18Institute for Energy and Climate Research: Stratosphere (IEK–7), Research Center JülichInstitute for Energy and Climate Research: Stratosphere (IEK–7), Research Center JülichMeteorological Institute Munich, Ludwig Maximilians University of MunichInstitute for Energy and Climate Research: Stratosphere (IEK–7), Research Center JülichEarth Physics and Astrophysics Department, Universidad Complutense de MadridNational Centre for Atmospheric Science (NCAS), University of CambridgeNational Institute for Environmental StudiesLaboratoire de Météorologie Dynamique (LMD/IPSL)Commonwealth Scientific and Industrial Research Organization (CSIRO) EnvironmentInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR)National Centre for Atmospheric Science (NCAS), University of CambridgeAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric ResearchNational Institute of Water and Atmospheric ResearchClimate Research Branch, Environment and Climate Change CanadaPhysikalisch-Meteorologisches Observatorium, Davos World Radiation CenterGoddard Earth Sciences Technology and Research (GESTAR-II), Morgan State UniversityNational Institute of Water and Atmospheric ResearchPhysikalisch-Meteorologisches Observatorium, Davos World Radiation CenterInstitute for Energy and Climate Research: Stratosphere (IEK–7), Research Center JülichAbstract Water vapor plays an important role in many aspects of the climate system, by affecting radiation, cloud formation, atmospheric chemistry and dynamics. Even the low stratospheric water vapor content provides an important climate feedback, but current climate models show a substantial moist bias in the lowermost stratosphere. Here we report crucial sensitivity of the atmospheric circulation in the stratosphere and troposphere to the abundance of water vapor in the lowermost stratosphere. We show from a mechanistic climate model experiment and inter-model variability that lowermost stratospheric water vapor decreases local temperatures, and thereby causes an upward and poleward shift of subtropical jets, a strengthening of the stratospheric circulation, a poleward shift of the tropospheric eddy-driven jet and regional climate impacts. The mechanistic model experiment in combination with atmospheric observations further shows that the prevailing moist bias in current models is likely caused by the transport scheme, and can be alleviated by employing a less diffusive Lagrangian scheme. The related effects on atmospheric circulation are of similar magnitude as climate change effects. Hence, lowermost stratospheric water vapor exerts a first order effect on atmospheric circulation and improving its representation in models offers promising prospects for future research.https://doi.org/10.1038/s41467-023-39559-2 |
spellingShingle | Edward Charlesworth Felix Plöger Thomas Birner Rasul Baikhadzhaev Marta Abalos Nathan Luke Abraham Hideharu Akiyoshi Slimane Bekki Fraser Dennison Patrick Jöckel James Keeble Doug Kinnison Olaf Morgenstern David Plummer Eugene Rozanov Sarah Strode Guang Zeng Tatiana Egorova Martin Riese Stratospheric water vapor affecting atmospheric circulation Nature Communications |
title | Stratospheric water vapor affecting atmospheric circulation |
title_full | Stratospheric water vapor affecting atmospheric circulation |
title_fullStr | Stratospheric water vapor affecting atmospheric circulation |
title_full_unstemmed | Stratospheric water vapor affecting atmospheric circulation |
title_short | Stratospheric water vapor affecting atmospheric circulation |
title_sort | stratospheric water vapor affecting atmospheric circulation |
url | https://doi.org/10.1038/s41467-023-39559-2 |
work_keys_str_mv | AT edwardcharlesworth stratosphericwatervaporaffectingatmosphericcirculation AT felixploger stratosphericwatervaporaffectingatmosphericcirculation AT thomasbirner stratosphericwatervaporaffectingatmosphericcirculation AT rasulbaikhadzhaev stratosphericwatervaporaffectingatmosphericcirculation AT martaabalos stratosphericwatervaporaffectingatmosphericcirculation AT nathanlukeabraham stratosphericwatervaporaffectingatmosphericcirculation AT hideharuakiyoshi stratosphericwatervaporaffectingatmosphericcirculation AT slimanebekki stratosphericwatervaporaffectingatmosphericcirculation AT fraserdennison stratosphericwatervaporaffectingatmosphericcirculation AT patrickjockel stratosphericwatervaporaffectingatmosphericcirculation AT jameskeeble stratosphericwatervaporaffectingatmosphericcirculation AT dougkinnison stratosphericwatervaporaffectingatmosphericcirculation AT olafmorgenstern stratosphericwatervaporaffectingatmosphericcirculation AT davidplummer stratosphericwatervaporaffectingatmosphericcirculation AT eugenerozanov stratosphericwatervaporaffectingatmosphericcirculation AT sarahstrode stratosphericwatervaporaffectingatmosphericcirculation AT guangzeng stratosphericwatervaporaffectingatmosphericcirculation AT tatianaegorova stratosphericwatervaporaffectingatmosphericcirculation AT martinriese stratosphericwatervaporaffectingatmosphericcirculation |