Stratospheric water vapor affecting atmospheric circulation

Abstract Water vapor plays an important role in many aspects of the climate system, by affecting radiation, cloud formation, atmospheric chemistry and dynamics. Even the low stratospheric water vapor content provides an important climate feedback, but current climate models show a substantial moist...

Full description

Bibliographic Details
Main Authors: Edward Charlesworth, Felix Plöger, Thomas Birner, Rasul Baikhadzhaev, Marta Abalos, Nathan Luke Abraham, Hideharu Akiyoshi, Slimane Bekki, Fraser Dennison, Patrick Jöckel, James Keeble, Doug Kinnison, Olaf Morgenstern, David Plummer, Eugene Rozanov, Sarah Strode, Guang Zeng, Tatiana Egorova, Martin Riese
Format: Article
Language:English
Published: Nature Portfolio 2023-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-39559-2
_version_ 1797784536220696576
author Edward Charlesworth
Felix Plöger
Thomas Birner
Rasul Baikhadzhaev
Marta Abalos
Nathan Luke Abraham
Hideharu Akiyoshi
Slimane Bekki
Fraser Dennison
Patrick Jöckel
James Keeble
Doug Kinnison
Olaf Morgenstern
David Plummer
Eugene Rozanov
Sarah Strode
Guang Zeng
Tatiana Egorova
Martin Riese
author_facet Edward Charlesworth
Felix Plöger
Thomas Birner
Rasul Baikhadzhaev
Marta Abalos
Nathan Luke Abraham
Hideharu Akiyoshi
Slimane Bekki
Fraser Dennison
Patrick Jöckel
James Keeble
Doug Kinnison
Olaf Morgenstern
David Plummer
Eugene Rozanov
Sarah Strode
Guang Zeng
Tatiana Egorova
Martin Riese
author_sort Edward Charlesworth
collection DOAJ
description Abstract Water vapor plays an important role in many aspects of the climate system, by affecting radiation, cloud formation, atmospheric chemistry and dynamics. Even the low stratospheric water vapor content provides an important climate feedback, but current climate models show a substantial moist bias in the lowermost stratosphere. Here we report crucial sensitivity of the atmospheric circulation in the stratosphere and troposphere to the abundance of water vapor in the lowermost stratosphere. We show from a mechanistic climate model experiment and inter-model variability that lowermost stratospheric water vapor decreases local temperatures, and thereby causes an upward and poleward shift of subtropical jets, a strengthening of the stratospheric circulation, a poleward shift of the tropospheric eddy-driven jet and regional climate impacts. The mechanistic model experiment in combination with atmospheric observations further shows that the prevailing moist bias in current models is likely caused by the transport scheme, and can be alleviated by employing a less diffusive Lagrangian scheme. The related effects on atmospheric circulation are of similar magnitude as climate change effects. Hence, lowermost stratospheric water vapor exerts a first order effect on atmospheric circulation and improving its representation in models offers promising prospects for future research.
first_indexed 2024-03-13T00:41:18Z
format Article
id doaj.art-10d2d20fdf7b4ac0bb3ae3f45f6776d5
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-13T00:41:18Z
publishDate 2023-07-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-10d2d20fdf7b4ac0bb3ae3f45f6776d52023-07-09T11:18:12ZengNature PortfolioNature Communications2041-17232023-07-011411910.1038/s41467-023-39559-2Stratospheric water vapor affecting atmospheric circulationEdward Charlesworth0Felix Plöger1Thomas Birner2Rasul Baikhadzhaev3Marta Abalos4Nathan Luke Abraham5Hideharu Akiyoshi6Slimane Bekki7Fraser Dennison8Patrick Jöckel9James Keeble10Doug Kinnison11Olaf Morgenstern12David Plummer13Eugene Rozanov14Sarah Strode15Guang Zeng16Tatiana Egorova17Martin Riese18Institute for Energy and Climate Research: Stratosphere (IEK–7), Research Center JülichInstitute for Energy and Climate Research: Stratosphere (IEK–7), Research Center JülichMeteorological Institute Munich, Ludwig Maximilians University of MunichInstitute for Energy and Climate Research: Stratosphere (IEK–7), Research Center JülichEarth Physics and Astrophysics Department, Universidad Complutense de MadridNational Centre for Atmospheric Science (NCAS), University of CambridgeNational Institute for Environmental StudiesLaboratoire de Météorologie Dynamique (LMD/IPSL)Commonwealth Scientific and Industrial Research Organization (CSIRO) EnvironmentInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR)National Centre for Atmospheric Science (NCAS), University of CambridgeAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric ResearchNational Institute of Water and Atmospheric ResearchClimate Research Branch, Environment and Climate Change CanadaPhysikalisch-Meteorologisches Observatorium, Davos World Radiation CenterGoddard Earth Sciences Technology and Research (GESTAR-II), Morgan State UniversityNational Institute of Water and Atmospheric ResearchPhysikalisch-Meteorologisches Observatorium, Davos World Radiation CenterInstitute for Energy and Climate Research: Stratosphere (IEK–7), Research Center JülichAbstract Water vapor plays an important role in many aspects of the climate system, by affecting radiation, cloud formation, atmospheric chemistry and dynamics. Even the low stratospheric water vapor content provides an important climate feedback, but current climate models show a substantial moist bias in the lowermost stratosphere. Here we report crucial sensitivity of the atmospheric circulation in the stratosphere and troposphere to the abundance of water vapor in the lowermost stratosphere. We show from a mechanistic climate model experiment and inter-model variability that lowermost stratospheric water vapor decreases local temperatures, and thereby causes an upward and poleward shift of subtropical jets, a strengthening of the stratospheric circulation, a poleward shift of the tropospheric eddy-driven jet and regional climate impacts. The mechanistic model experiment in combination with atmospheric observations further shows that the prevailing moist bias in current models is likely caused by the transport scheme, and can be alleviated by employing a less diffusive Lagrangian scheme. The related effects on atmospheric circulation are of similar magnitude as climate change effects. Hence, lowermost stratospheric water vapor exerts a first order effect on atmospheric circulation and improving its representation in models offers promising prospects for future research.https://doi.org/10.1038/s41467-023-39559-2
spellingShingle Edward Charlesworth
Felix Plöger
Thomas Birner
Rasul Baikhadzhaev
Marta Abalos
Nathan Luke Abraham
Hideharu Akiyoshi
Slimane Bekki
Fraser Dennison
Patrick Jöckel
James Keeble
Doug Kinnison
Olaf Morgenstern
David Plummer
Eugene Rozanov
Sarah Strode
Guang Zeng
Tatiana Egorova
Martin Riese
Stratospheric water vapor affecting atmospheric circulation
Nature Communications
title Stratospheric water vapor affecting atmospheric circulation
title_full Stratospheric water vapor affecting atmospheric circulation
title_fullStr Stratospheric water vapor affecting atmospheric circulation
title_full_unstemmed Stratospheric water vapor affecting atmospheric circulation
title_short Stratospheric water vapor affecting atmospheric circulation
title_sort stratospheric water vapor affecting atmospheric circulation
url https://doi.org/10.1038/s41467-023-39559-2
work_keys_str_mv AT edwardcharlesworth stratosphericwatervaporaffectingatmosphericcirculation
AT felixploger stratosphericwatervaporaffectingatmosphericcirculation
AT thomasbirner stratosphericwatervaporaffectingatmosphericcirculation
AT rasulbaikhadzhaev stratosphericwatervaporaffectingatmosphericcirculation
AT martaabalos stratosphericwatervaporaffectingatmosphericcirculation
AT nathanlukeabraham stratosphericwatervaporaffectingatmosphericcirculation
AT hideharuakiyoshi stratosphericwatervaporaffectingatmosphericcirculation
AT slimanebekki stratosphericwatervaporaffectingatmosphericcirculation
AT fraserdennison stratosphericwatervaporaffectingatmosphericcirculation
AT patrickjockel stratosphericwatervaporaffectingatmosphericcirculation
AT jameskeeble stratosphericwatervaporaffectingatmosphericcirculation
AT dougkinnison stratosphericwatervaporaffectingatmosphericcirculation
AT olafmorgenstern stratosphericwatervaporaffectingatmosphericcirculation
AT davidplummer stratosphericwatervaporaffectingatmosphericcirculation
AT eugenerozanov stratosphericwatervaporaffectingatmosphericcirculation
AT sarahstrode stratosphericwatervaporaffectingatmosphericcirculation
AT guangzeng stratosphericwatervaporaffectingatmosphericcirculation
AT tatianaegorova stratosphericwatervaporaffectingatmosphericcirculation
AT martinriese stratosphericwatervaporaffectingatmosphericcirculation