Treatment of Liquid By-Products of Hydrothermal Carbonization (HTC) of Agricultural Digestate Using Membrane Separation

Agriculture affects both the quantity and the quality of water available for other purposes, which becomes problematic, especially during increasingly frequent severe droughts. This requires tapping into the resources that are typically neglected. One such resource is a by-product of anaerobic diges...

Full description

Bibliographic Details
Main Authors: Agnieszka Urbanowska, Małgorzata Kabsch-Korbutowicz, Mateusz Wnukowski, Przemysław Seruga, Marcin Baranowski, Halina Pawlak-Kruczek, Monika Serafin-Tkaczuk, Krystian Krochmalny, Lukasz Niedzwiecki
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/1/262
Description
Summary:Agriculture affects both the quantity and the quality of water available for other purposes, which becomes problematic, especially during increasingly frequent severe droughts. This requires tapping into the resources that are typically neglected. One such resource is a by-product of anaerobic digestion, in which moisture content typically exceeds 90%. Application of hydrothermal carbonization process (HTC) to this residue could partially remove organic and inorganic material, improve dewatering, decrease the overall solid mass, sanitize the digestate, change its properties, and eliminate problems related with emissions of odors from the installation. However, a significant gap still exists in terms of the dewatering of the hydrochars and the composition of the effluents. This work presents results of experimental investigation focused on the removal of organic compounds from the HTC effluent. Results of qualitative and quantitative analysis of liquid by-products of HTC of the agricultural digestate showed that acetic acid, 3-pyridinol, 1-hydroxyacetone, and 1,3-propanediol were the main liquid organic products of the process. Application of ultrafiltration process with the use of 10 kDa membrane for liquid HTC by-product treatment allows for the reduction of chemical oxygen demand up to 30%, biological oxygen demand up to 10%, and dissolved organic carbon up to 21%.
ISSN:1996-1073