Imatinib attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors activation in isoproterenol induced model.
Cardiac fibrosis is a significant global health problem with limited treatment choices. Although previous studies have shown that imatinib (IMA) inhibited cardiac fibrosis, the anti-fibrotic mechanisms have not been clearly uncovered. The aim of this study is to evaluate whether IMA attenuates cardi...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2017-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5453565?pdf=render |
_version_ | 1818014742803906560 |
---|---|
author | Le-Xun Wang Xiao Yang Yuan Yue Tian Fan Jian Hou Guang-Xian Chen Meng-Ya Liang Zhong-Kai Wu |
author_facet | Le-Xun Wang Xiao Yang Yuan Yue Tian Fan Jian Hou Guang-Xian Chen Meng-Ya Liang Zhong-Kai Wu |
author_sort | Le-Xun Wang |
collection | DOAJ |
description | Cardiac fibrosis is a significant global health problem with limited treatment choices. Although previous studies have shown that imatinib (IMA) inhibited cardiac fibrosis, the anti-fibrotic mechanisms have not been clearly uncovered. The aim of this study is to evaluate whether IMA attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors (PDGFR) on isoproterenol (ISO)-induced mice. Adult male C57BL/6 mice were treated with vehicle or ISO ± IMA for one week. After echocardiography examination, the hearts of mice were used for histopathologic, RT-qPCR, and western blot analyses. We found that the ventricular wall thickness, cardiac hypertrophy, and apoptosis were enhanced following ISO treatment. IMA decreased the left ventricular wall thickness, prevented hypertrophy, and inhibited apoptosis induced by ISO. In addition, IMA attenuated the accumulation of collagens and α-smooth muscle actin (α-SMA) (the markers of fibrosis) caused by ISO treatment. Moreover, the expression of fibrosis related genes, and the phosphorylation of PDGFRs in ISO-treated mice hearts were inhibited by IMA as well. However, IMA did not change the expression of the matrix metalloproteinase-9 (MMP-9) in ISO-treated hearts. Furthermore, IMA reduced the expressions of collagens as well as α-SMA caused by activation of PDGFRα in cardiac fibroblasts. Taken together, our data demonstrate that IMA attenuated the cardiac fibrosis by blocking the phosphorylation of PDGFRs in the ISO-induced mice model. This study indicates that IMA could be a potentially therapeutic option for cardiac fibrosis in clinical application. |
first_indexed | 2024-04-14T06:49:05Z |
format | Article |
id | doaj.art-10f429dbc37047bfbcc681184016de25 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-14T06:49:05Z |
publishDate | 2017-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-10f429dbc37047bfbcc681184016de252022-12-22T02:07:05ZengPublic Library of Science (PLoS)PLoS ONE1932-62032017-01-01126e017861910.1371/journal.pone.0178619Imatinib attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors activation in isoproterenol induced model.Le-Xun WangXiao YangYuan YueTian FanJian HouGuang-Xian ChenMeng-Ya LiangZhong-Kai WuCardiac fibrosis is a significant global health problem with limited treatment choices. Although previous studies have shown that imatinib (IMA) inhibited cardiac fibrosis, the anti-fibrotic mechanisms have not been clearly uncovered. The aim of this study is to evaluate whether IMA attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors (PDGFR) on isoproterenol (ISO)-induced mice. Adult male C57BL/6 mice were treated with vehicle or ISO ± IMA for one week. After echocardiography examination, the hearts of mice were used for histopathologic, RT-qPCR, and western blot analyses. We found that the ventricular wall thickness, cardiac hypertrophy, and apoptosis were enhanced following ISO treatment. IMA decreased the left ventricular wall thickness, prevented hypertrophy, and inhibited apoptosis induced by ISO. In addition, IMA attenuated the accumulation of collagens and α-smooth muscle actin (α-SMA) (the markers of fibrosis) caused by ISO treatment. Moreover, the expression of fibrosis related genes, and the phosphorylation of PDGFRs in ISO-treated mice hearts were inhibited by IMA as well. However, IMA did not change the expression of the matrix metalloproteinase-9 (MMP-9) in ISO-treated hearts. Furthermore, IMA reduced the expressions of collagens as well as α-SMA caused by activation of PDGFRα in cardiac fibroblasts. Taken together, our data demonstrate that IMA attenuated the cardiac fibrosis by blocking the phosphorylation of PDGFRs in the ISO-induced mice model. This study indicates that IMA could be a potentially therapeutic option for cardiac fibrosis in clinical application.http://europepmc.org/articles/PMC5453565?pdf=render |
spellingShingle | Le-Xun Wang Xiao Yang Yuan Yue Tian Fan Jian Hou Guang-Xian Chen Meng-Ya Liang Zhong-Kai Wu Imatinib attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors activation in isoproterenol induced model. PLoS ONE |
title | Imatinib attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors activation in isoproterenol induced model. |
title_full | Imatinib attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors activation in isoproterenol induced model. |
title_fullStr | Imatinib attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors activation in isoproterenol induced model. |
title_full_unstemmed | Imatinib attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors activation in isoproterenol induced model. |
title_short | Imatinib attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors activation in isoproterenol induced model. |
title_sort | imatinib attenuates cardiac fibrosis by inhibiting platelet derived growth factor receptors activation in isoproterenol induced model |
url | http://europepmc.org/articles/PMC5453565?pdf=render |
work_keys_str_mv | AT lexunwang imatinibattenuatescardiacfibrosisbyinhibitingplateletderivedgrowthfactorreceptorsactivationinisoproterenolinducedmodel AT xiaoyang imatinibattenuatescardiacfibrosisbyinhibitingplateletderivedgrowthfactorreceptorsactivationinisoproterenolinducedmodel AT yuanyue imatinibattenuatescardiacfibrosisbyinhibitingplateletderivedgrowthfactorreceptorsactivationinisoproterenolinducedmodel AT tianfan imatinibattenuatescardiacfibrosisbyinhibitingplateletderivedgrowthfactorreceptorsactivationinisoproterenolinducedmodel AT jianhou imatinibattenuatescardiacfibrosisbyinhibitingplateletderivedgrowthfactorreceptorsactivationinisoproterenolinducedmodel AT guangxianchen imatinibattenuatescardiacfibrosisbyinhibitingplateletderivedgrowthfactorreceptorsactivationinisoproterenolinducedmodel AT mengyaliang imatinibattenuatescardiacfibrosisbyinhibitingplateletderivedgrowthfactorreceptorsactivationinisoproterenolinducedmodel AT zhongkaiwu imatinibattenuatescardiacfibrosisbyinhibitingplateletderivedgrowthfactorreceptorsactivationinisoproterenolinducedmodel |