Study on the flotation technology and adsorption mechanism of galena–jamesonite separation

In order to further separate the concentrate containing galena and jamesonite before undergoing hydrometallurgical process, flotation experiment was performed on the basis of mineralogical analysis. And the adsorption mechanisms of collector H on galena and jamesonite were also studied by FT-IR spec...

Full description

Bibliographic Details
Main Authors: Wei Sun, Haisheng Han, Hongbiao Tao, Runqing Liu
Format: Article
Language:English
Published: Elsevier 2015-01-01
Series:International Journal of Mining Science and Technology
Online Access:http://www.sciencedirect.com/science/article/pii/S2095268614001803
Description
Summary:In order to further separate the concentrate containing galena and jamesonite before undergoing hydrometallurgical process, flotation experiment was performed on the basis of mineralogical analysis. And the adsorption mechanisms of collector H on galena and jamesonite were also studied by FT-IR spectra analysis and molecular dynamics (MD) simulation. The flotation result shows that the efficient separation can be achieved with H as selective collector. Galena concentrated with Pb grade of 72.09% and Pb recovery of 50.96% was obtained, and jamesonite concentrated with Sb grade and recovery of 10.89% and 76.67% respectively was obtained as well. Infrared spectrum analysis indicates that collector H can adsorb on the surface of galena and react with Pb2+ to generate hydrophobic salt, while no evident adsorption phenomenon was observed on the surface of jamesonite. The MD simulation and calculation results demonstrate that adsorption energy of collector H on galena and jamesonite surface is −872.74 kJ/mol and −500.538 kJ/mol, respectively, which means collector H is easier to adsorb on the surface of galena than that of jamesonite. Keywords: Mixed concentration, Galena, Jamesonite, Flotation, Molecular dynamic simulation, Adsorption energy
ISSN:2095-2686