A Study on the Impermeability of Nanodispersible Modified Bentonite Based on Colloidal Osmotic Pressure Mechanisms and the Adsorption of Harmful Substances
With the growing demands of human beings, sanitary landfill, along with the increase in landfill depth and leachate water pressure, has put forward new and higher requirements for the impermeable layer. In particular, it is required to have a certain adsorption capacity of harmful substances from th...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-06-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/13/12/1840 |
_version_ | 1797593225505013760 |
---|---|
author | Xi Wei Chunyang Zhang Depeng Gong Mengdong Tu Lili Wu Wanyu Chen Chaocan Zhang |
author_facet | Xi Wei Chunyang Zhang Depeng Gong Mengdong Tu Lili Wu Wanyu Chen Chaocan Zhang |
author_sort | Xi Wei |
collection | DOAJ |
description | With the growing demands of human beings, sanitary landfill, along with the increase in landfill depth and leachate water pressure, has put forward new and higher requirements for the impermeable layer. In particular, it is required to have a certain adsorption capacity of harmful substances from the perspective of environmental protection. Hence, the impermeability of polymer bentonite–sand mixtures (PBTS) at different water pressure and the adsorption properties of polymer bentonite (PBT) on contaminants were investigated through the modification of PBT using betaine compounded with sodium polyacrylate (SPA). It was found that the composite modification of betaine and SPA could reduce the average particle size of PBT dispersed in water (reduced to 106 nm from 201 nm) and enhance the swelling properties. As the content of SPA increased, the hydraulic conductivity of PBTS system decreases and the permeability resistance improves, while the resistance to external water pressure increases. It is proposed a concept of the potential of osmotic pressure in a constrained space to explain the impermeability mechanism of PBTS. The potential of osmotic pressure obtained by linear extrapolation of the trendline of colloidal osmotic pressure versus mass content of PBT could represent the external water pressure that the PBT resist. Additionally, the PBT also has a high adsorption capacity for both organic pollutants and heavy metal ions. The adsorption rate of PBT was up to 99.36% for phenol; up to 99.9% for methylene blue; and 99.89%, 99.9%, and 95.7% for low concentrations of Pb<sup>2+</sup>, Cd<sup>2+</sup>, and Hg<sup>+</sup>, respectively. This work is expected to provide strong technical support for the future development in the field of impermeability and removal of hazardous substances (organic and heavy metals). |
first_indexed | 2024-03-11T02:04:57Z |
format | Article |
id | doaj.art-1110457d4dc6486f80c2a14d1442fd81 |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-03-11T02:04:57Z |
publishDate | 2023-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-1110457d4dc6486f80c2a14d1442fd812023-11-18T11:53:37ZengMDPI AGNanomaterials2079-49912023-06-011312184010.3390/nano13121840A Study on the Impermeability of Nanodispersible Modified Bentonite Based on Colloidal Osmotic Pressure Mechanisms and the Adsorption of Harmful SubstancesXi Wei0Chunyang Zhang1Depeng Gong2Mengdong Tu3Lili Wu4Wanyu Chen5Chaocan Zhang6School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, ChinaSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, ChinaSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, ChinaSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, ChinaSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, ChinaSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, ChinaSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, ChinaWith the growing demands of human beings, sanitary landfill, along with the increase in landfill depth and leachate water pressure, has put forward new and higher requirements for the impermeable layer. In particular, it is required to have a certain adsorption capacity of harmful substances from the perspective of environmental protection. Hence, the impermeability of polymer bentonite–sand mixtures (PBTS) at different water pressure and the adsorption properties of polymer bentonite (PBT) on contaminants were investigated through the modification of PBT using betaine compounded with sodium polyacrylate (SPA). It was found that the composite modification of betaine and SPA could reduce the average particle size of PBT dispersed in water (reduced to 106 nm from 201 nm) and enhance the swelling properties. As the content of SPA increased, the hydraulic conductivity of PBTS system decreases and the permeability resistance improves, while the resistance to external water pressure increases. It is proposed a concept of the potential of osmotic pressure in a constrained space to explain the impermeability mechanism of PBTS. The potential of osmotic pressure obtained by linear extrapolation of the trendline of colloidal osmotic pressure versus mass content of PBT could represent the external water pressure that the PBT resist. Additionally, the PBT also has a high adsorption capacity for both organic pollutants and heavy metal ions. The adsorption rate of PBT was up to 99.36% for phenol; up to 99.9% for methylene blue; and 99.89%, 99.9%, and 95.7% for low concentrations of Pb<sup>2+</sup>, Cd<sup>2+</sup>, and Hg<sup>+</sup>, respectively. This work is expected to provide strong technical support for the future development in the field of impermeability and removal of hazardous substances (organic and heavy metals).https://www.mdpi.com/2079-4991/13/12/1840bentonitesodium polyacrylatebetaineosmotic pressurehydraulic conductivityadsorption |
spellingShingle | Xi Wei Chunyang Zhang Depeng Gong Mengdong Tu Lili Wu Wanyu Chen Chaocan Zhang A Study on the Impermeability of Nanodispersible Modified Bentonite Based on Colloidal Osmotic Pressure Mechanisms and the Adsorption of Harmful Substances Nanomaterials bentonite sodium polyacrylate betaine osmotic pressure hydraulic conductivity adsorption |
title | A Study on the Impermeability of Nanodispersible Modified Bentonite Based on Colloidal Osmotic Pressure Mechanisms and the Adsorption of Harmful Substances |
title_full | A Study on the Impermeability of Nanodispersible Modified Bentonite Based on Colloidal Osmotic Pressure Mechanisms and the Adsorption of Harmful Substances |
title_fullStr | A Study on the Impermeability of Nanodispersible Modified Bentonite Based on Colloidal Osmotic Pressure Mechanisms and the Adsorption of Harmful Substances |
title_full_unstemmed | A Study on the Impermeability of Nanodispersible Modified Bentonite Based on Colloidal Osmotic Pressure Mechanisms and the Adsorption of Harmful Substances |
title_short | A Study on the Impermeability of Nanodispersible Modified Bentonite Based on Colloidal Osmotic Pressure Mechanisms and the Adsorption of Harmful Substances |
title_sort | study on the impermeability of nanodispersible modified bentonite based on colloidal osmotic pressure mechanisms and the adsorption of harmful substances |
topic | bentonite sodium polyacrylate betaine osmotic pressure hydraulic conductivity adsorption |
url | https://www.mdpi.com/2079-4991/13/12/1840 |
work_keys_str_mv | AT xiwei astudyontheimpermeabilityofnanodispersiblemodifiedbentonitebasedoncolloidalosmoticpressuremechanismsandtheadsorptionofharmfulsubstances AT chunyangzhang astudyontheimpermeabilityofnanodispersiblemodifiedbentonitebasedoncolloidalosmoticpressuremechanismsandtheadsorptionofharmfulsubstances AT depenggong astudyontheimpermeabilityofnanodispersiblemodifiedbentonitebasedoncolloidalosmoticpressuremechanismsandtheadsorptionofharmfulsubstances AT mengdongtu astudyontheimpermeabilityofnanodispersiblemodifiedbentonitebasedoncolloidalosmoticpressuremechanismsandtheadsorptionofharmfulsubstances AT liliwu astudyontheimpermeabilityofnanodispersiblemodifiedbentonitebasedoncolloidalosmoticpressuremechanismsandtheadsorptionofharmfulsubstances AT wanyuchen astudyontheimpermeabilityofnanodispersiblemodifiedbentonitebasedoncolloidalosmoticpressuremechanismsandtheadsorptionofharmfulsubstances AT chaocanzhang astudyontheimpermeabilityofnanodispersiblemodifiedbentonitebasedoncolloidalosmoticpressuremechanismsandtheadsorptionofharmfulsubstances AT xiwei studyontheimpermeabilityofnanodispersiblemodifiedbentonitebasedoncolloidalosmoticpressuremechanismsandtheadsorptionofharmfulsubstances AT chunyangzhang studyontheimpermeabilityofnanodispersiblemodifiedbentonitebasedoncolloidalosmoticpressuremechanismsandtheadsorptionofharmfulsubstances AT depenggong studyontheimpermeabilityofnanodispersiblemodifiedbentonitebasedoncolloidalosmoticpressuremechanismsandtheadsorptionofharmfulsubstances AT mengdongtu studyontheimpermeabilityofnanodispersiblemodifiedbentonitebasedoncolloidalosmoticpressuremechanismsandtheadsorptionofharmfulsubstances AT liliwu studyontheimpermeabilityofnanodispersiblemodifiedbentonitebasedoncolloidalosmoticpressuremechanismsandtheadsorptionofharmfulsubstances AT wanyuchen studyontheimpermeabilityofnanodispersiblemodifiedbentonitebasedoncolloidalosmoticpressuremechanismsandtheadsorptionofharmfulsubstances AT chaocanzhang studyontheimpermeabilityofnanodispersiblemodifiedbentonitebasedoncolloidalosmoticpressuremechanismsandtheadsorptionofharmfulsubstances |