Symmetry and Correspondence of Algorithmic Complexity over Geometric, Spatial and Topological Representations

We introduce a definition of algorithmic symmetry in the context of geometric and spatial complexity able to capture mathematical aspects of different objects using as a case study polyominoes and polyhedral graphs. We review, study and apply a method for approximating the algorithmic complexity (al...

Full description

Bibliographic Details
Main Authors: Hector Zenil, Narsis A. Kiani, Jesper Tegnér
Format: Article
Language:English
Published: MDPI AG 2018-07-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/20/7/534
Description
Summary:We introduce a definition of algorithmic symmetry in the context of geometric and spatial complexity able to capture mathematical aspects of different objects using as a case study polyominoes and polyhedral graphs. We review, study and apply a method for approximating the algorithmic complexity (also known as Kolmogorov–Chaitin complexity) of graphs and networks based on the concept of Algorithmic Probability (AP). AP is a concept (and method) capable of recursively enumerate all properties of computable (causal) nature beyond statistical regularities. We explore the connections of algorithmic complexity—both theoretical and numerical—with geometric properties mainly symmetry and topology from an (algorithmic) information-theoretic perspective. We show that approximations to algorithmic complexity by lossless compression and an Algorithmic Probability-based method can characterize spatial, geometric, symmetric and topological properties of mathematical objects and graphs.
ISSN:1099-4300