Modeling of deep indentation in brittle materials

We modelled deep indentation in brittle materials via a tensorial approach in three dimensions. Experimentally, we performed deep indentation in base catalyzed aerogels. When deep indentation is performed in these materials, it appears a Hertzian cone crack for both experimental and numerical result...

Full description

Bibliographic Details
Main Authors: Nathalie Olivi-Tran, Florence Despetis, Annelise Faivre
Format: Article
Language:English
Published: IOP Publishing 2020-01-01
Series:Materials Research Express
Subjects:
Online Access:https://doi.org/10.1088/2053-1591/ab7b29
Description
Summary:We modelled deep indentation in brittle materials via a tensorial approach in three dimensions. Experimentally, we performed deep indentation in base catalyzed aerogels. When deep indentation is performed in these materials, it appears a Hertzian cone crack for both experimental and numerical results. The cone angle (angle between the surface and the boundaries of the Hertzian cone) depends on the material in which indentation is performed. The Young moduli of the materials has no effect on these angles. The tendency is that materials with increasing Poisson ratios have a decreasing value of the Hertzian cone angle.
ISSN:2053-1591