Mass-dependence of self-diffusion coefficients in disparate-mass binary fluid mixtures

Self-diffusion coefficients of a binary fluid mixture with components differing only in their particle masses are studied, in particular the case when mass ratio μ of light and heavy particles tends to zero. These coefficients were calculated within the memory function formalism, using the systemati...

Full description

Bibliographic Details
Main Authors: I. Binas, I. Mryglod
Format: Article
Language:English
Published: Institute for Condensed Matter Physics 2009-01-01
Series:Condensed Matter Physics
Subjects:
Online Access:http://dx.doi.org/10.5488/CMP.12.4.647
Description
Summary:Self-diffusion coefficients of a binary fluid mixture with components differing only in their particle masses are studied, in particular the case when mass ratio μ of light and heavy particles tends to zero. These coefficients were calculated within the memory function formalism, using the systematic subsequence of approximations for the relaxation times of velocity autocorrelation function. We obtained a general relation for the self-diffusion coefficients which show polynomial dependence on the mass ratio μ. The obtained expression has a correct Brownian limit. We developed the hierarchy of approximations for the self-diffusion coefficients that tends to an exact result from above and below when the order of approximations increases.
ISSN:1607-324X