Multifrequency electromagnetic method for the hydrogeophysical characterization of hard-rock aquifers: the case of the upstream watershed of White Bandama (northern Ivory Coast)
In West Africa, the drinking water supply relies on the hard-rock aquifers. In Ivory Coast, the population growth along with the climate changes make drinking water resources highly vulnerable. The White Bandama upstream watershed in northern Ivory Coast is located on a fissured hard-rock aquifer an...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2022-01-01
|
Series: | BSGF - Earth Sciences Bulletin |
Subjects: | |
Online Access: | https://www.bsgf.fr/articles/bsgf/full_html/2022/01/bsgf210025/bsgf210025.html |
_version_ | 1811179587552411648 |
---|---|
author | Ouedraogo Moussa Pessel Marc Durand Véronique Saintenoy Albane Kamagate Bamory Savane Issiaka |
author_facet | Ouedraogo Moussa Pessel Marc Durand Véronique Saintenoy Albane Kamagate Bamory Savane Issiaka |
author_sort | Ouedraogo Moussa |
collection | DOAJ |
description | In West Africa, the drinking water supply relies on the hard-rock aquifers. In Ivory Coast, the population growth along with the climate changes make drinking water resources highly vulnerable. The White Bandama upstream watershed in northern Ivory Coast is located on a fissured hard-rock aquifer and is poorly known, both in the geometry of the reservoirs and in the hydrogeological potential of the reserves it contains. Indeed, the heterogeneous subsurface in this region shows high variability in the hydraulic conductivity inducing difficulties in the hydrogeological exploration. The determination of the geometry and hydrodynamic properties of the aquifer are required for a sustainable management of this water resource and for a better choice of future well locations. This study presents a hydrogeophysical approach using the multifrequency electromagnetic device PROMIS®, as well as lithology logs and geological information of a 30 × 30 km zone in the northwestern part of the White Bandama catchment. Our geophysical data are interpreted with 1D multi-layer models consistent with the discontinuities observed in lithology logs and the geology of the site. Results allow to precise the local thicknesses of the 3 main units of our study area down to 50 m, being from top to down, saprolite (which is often indured close to the surface), fissured-rock zone and rock substratum. Between the saprolite and the fissured zone, the main aquifer unit constitutes the interesting target for productive water wells. Its thickness ranges from 15 to 30 m. A detailed knowledge of the local aquifer geometry constitutes the first and crucial step before going further into a complete hydrogeological study. |
first_indexed | 2024-04-11T06:36:44Z |
format | Article |
id | doaj.art-11278e2737174764b6d91d8a09c0d7b8 |
institution | Directory Open Access Journal |
issn | 1777-5817 |
language | English |
last_indexed | 2024-04-11T06:36:44Z |
publishDate | 2022-01-01 |
publisher | EDP Sciences |
record_format | Article |
series | BSGF - Earth Sciences Bulletin |
spelling | doaj.art-11278e2737174764b6d91d8a09c0d7b82022-12-22T04:39:39ZengEDP SciencesBSGF - Earth Sciences Bulletin1777-58172022-01-011931110.1051/bsgf/2022009bsgf210025Multifrequency electromagnetic method for the hydrogeophysical characterization of hard-rock aquifers: the case of the upstream watershed of White Bandama (northern Ivory Coast)Ouedraogo Moussa0https://orcid.org/0000-0002-6840-1041Pessel Marc1https://orcid.org/0000-0002-4097-9204Durand Véronique2https://orcid.org/0000-0002-5816-9306Saintenoy Albane3https://orcid.org/0000-0002-9712-3781Kamagate Bamory4Savane Issiaka5Université Paris-Saclay, CNRS, UMR 8148 GEOPSUniversité Paris-Saclay, CNRS, UMR 8148 GEOPSUniversité Paris-Saclay, CNRS, UMR 8148 GEOPSUniversité Paris-Saclay, CNRS, UMR 8148 GEOPSUFR Sciences Géologiques et Minières, Université de ManLaboratoire de Géosciences et Environnement (LGE), Université Nangui AbrogouaIn West Africa, the drinking water supply relies on the hard-rock aquifers. In Ivory Coast, the population growth along with the climate changes make drinking water resources highly vulnerable. The White Bandama upstream watershed in northern Ivory Coast is located on a fissured hard-rock aquifer and is poorly known, both in the geometry of the reservoirs and in the hydrogeological potential of the reserves it contains. Indeed, the heterogeneous subsurface in this region shows high variability in the hydraulic conductivity inducing difficulties in the hydrogeological exploration. The determination of the geometry and hydrodynamic properties of the aquifer are required for a sustainable management of this water resource and for a better choice of future well locations. This study presents a hydrogeophysical approach using the multifrequency electromagnetic device PROMIS®, as well as lithology logs and geological information of a 30 × 30 km zone in the northwestern part of the White Bandama catchment. Our geophysical data are interpreted with 1D multi-layer models consistent with the discontinuities observed in lithology logs and the geology of the site. Results allow to precise the local thicknesses of the 3 main units of our study area down to 50 m, being from top to down, saprolite (which is often indured close to the surface), fissured-rock zone and rock substratum. Between the saprolite and the fissured zone, the main aquifer unit constitutes the interesting target for productive water wells. Its thickness ranges from 15 to 30 m. A detailed knowledge of the local aquifer geometry constitutes the first and crucial step before going further into a complete hydrogeological study.https://www.bsgf.fr/articles/bsgf/full_html/2022/01/bsgf210025/bsgf210025.htmlhard-rock aquiferelectromagnetic soundinglithologshydrogeophysicsivory coast |
spellingShingle | Ouedraogo Moussa Pessel Marc Durand Véronique Saintenoy Albane Kamagate Bamory Savane Issiaka Multifrequency electromagnetic method for the hydrogeophysical characterization of hard-rock aquifers: the case of the upstream watershed of White Bandama (northern Ivory Coast) BSGF - Earth Sciences Bulletin hard-rock aquifer electromagnetic sounding lithologs hydrogeophysics ivory coast |
title | Multifrequency electromagnetic method for the hydrogeophysical characterization of hard-rock aquifers: the case of the upstream watershed of White Bandama (northern Ivory Coast) |
title_full | Multifrequency electromagnetic method for the hydrogeophysical characterization of hard-rock aquifers: the case of the upstream watershed of White Bandama (northern Ivory Coast) |
title_fullStr | Multifrequency electromagnetic method for the hydrogeophysical characterization of hard-rock aquifers: the case of the upstream watershed of White Bandama (northern Ivory Coast) |
title_full_unstemmed | Multifrequency electromagnetic method for the hydrogeophysical characterization of hard-rock aquifers: the case of the upstream watershed of White Bandama (northern Ivory Coast) |
title_short | Multifrequency electromagnetic method for the hydrogeophysical characterization of hard-rock aquifers: the case of the upstream watershed of White Bandama (northern Ivory Coast) |
title_sort | multifrequency electromagnetic method for the hydrogeophysical characterization of hard rock aquifers the case of the upstream watershed of white bandama northern ivory coast |
topic | hard-rock aquifer electromagnetic sounding lithologs hydrogeophysics ivory coast |
url | https://www.bsgf.fr/articles/bsgf/full_html/2022/01/bsgf210025/bsgf210025.html |
work_keys_str_mv | AT ouedraogomoussa multifrequencyelectromagneticmethodforthehydrogeophysicalcharacterizationofhardrockaquifersthecaseoftheupstreamwatershedofwhitebandamanorthernivorycoast AT pesselmarc multifrequencyelectromagneticmethodforthehydrogeophysicalcharacterizationofhardrockaquifersthecaseoftheupstreamwatershedofwhitebandamanorthernivorycoast AT durandveronique multifrequencyelectromagneticmethodforthehydrogeophysicalcharacterizationofhardrockaquifersthecaseoftheupstreamwatershedofwhitebandamanorthernivorycoast AT saintenoyalbane multifrequencyelectromagneticmethodforthehydrogeophysicalcharacterizationofhardrockaquifersthecaseoftheupstreamwatershedofwhitebandamanorthernivorycoast AT kamagatebamory multifrequencyelectromagneticmethodforthehydrogeophysicalcharacterizationofhardrockaquifersthecaseoftheupstreamwatershedofwhitebandamanorthernivorycoast AT savaneissiaka multifrequencyelectromagneticmethodforthehydrogeophysicalcharacterizationofhardrockaquifersthecaseoftheupstreamwatershedofwhitebandamanorthernivorycoast |