Application of the Generalized Bochner Technique to the Study of Conformally Flat Riemannian Manifolds

In this article, we discuss the global aspects of the geometry of locally conformally flat (complete and compact) Riemannian manifolds. In particular, the article reviews and improves some results (e.g., the conditions of compactness and degeneration into spherical or flat space forms) on the geomet...

Full description

Bibliographic Details
Main Authors: Josef Mikeš, Vladimir Rovenski, Sergey Stepanov, Irina Tsyganok
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/9/927
Description
Summary:In this article, we discuss the global aspects of the geometry of locally conformally flat (complete and compact) Riemannian manifolds. In particular, the article reviews and improves some results (e.g., the conditions of compactness and degeneration into spherical or flat space forms) on the geometry “in the large" of locally conformally flat Riemannian manifolds. The results presented here were obtained using the generalized and classical Bochner technique, as well as the Ricci flow.
ISSN:2227-7390