Drive System Inverter Modeling Using Symbolic Regression

For accurate and efficient control performance of electrical drives, precise values of phase voltages are required. In order to achieve control of the electric drive, the development of mathematical models of the system and its parts is often approached. Data-driven modeling using artificial intelli...

Full description

Bibliographic Details
Main Authors: Matko Glučina, Nikola Anđelić, Ivan Lorencin, Sandi Baressi Šegota
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/12/3/638
_version_ 1797624797496082432
author Matko Glučina
Nikola Anđelić
Ivan Lorencin
Sandi Baressi Šegota
author_facet Matko Glučina
Nikola Anđelić
Ivan Lorencin
Sandi Baressi Šegota
author_sort Matko Glučina
collection DOAJ
description For accurate and efficient control performance of electrical drives, precise values of phase voltages are required. In order to achieve control of the electric drive, the development of mathematical models of the system and its parts is often approached. Data-driven modeling using artificial intelligence can often be unprofitable due to the large amount of computing resources required. To overcome this problem, the idea is to investigate if a genetic programming–symbolic regressor (GPSR) algorithm could be used to obtain simple symbolic expressions which could estimate the mean phase voltages (black-box inverter model) and duty cycles (black-box compensation scheme) with high accuracy using a publicly available dataset. To obtain the best symbolic expressions using GPSR, a random hyperparameter search method and 5-fold cross-validation were developed. The best symbolic expressions were chosen based on their estimation performance, which was measured using the coefficient of determination (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula>), mean absolute error (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>A</mi><mi>E</mi></mrow></semantics></math></inline-formula>), and root mean squared error (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>M</mi><mi>S</mi><mi>E</mi></mrow></semantics></math></inline-formula>). The best symbolic expressions for the estimation of mean phase voltages achieved <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>A</mi><mi>E</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>M</mi><mi>S</mi><mi>E</mi></mrow></semantics></math></inline-formula> values of 0.999, 2.5, and 2.8, respectively. The best symbolic expressions for the estimation of duty cycles achieved <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>A</mi><mi>E</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>M</mi><mi>S</mi><mi>E</mi></mrow></semantics></math></inline-formula> values of 0.9999, 0.0027, and 0.003, respectively. The originality of this work lies in the application of the GPSR algorithm, which, based on a mathematical equation it generates, can estimate the value of mean phase voltages and duty cycles in a three-phase inverter. Using the obtained model, it is possible to estimate the given aforementioned values. Such high-performing estimation represents an opportunity to replace expensive online equipment with a cheaper, more precise, and faster approach, such as a GPSR-based model. The presented procedure shows that the symbolic expression for the accurate estimation of mean phase voltages and duty cycles can be obtained using the GPSR algorithm.
first_indexed 2024-03-11T09:47:39Z
format Article
id doaj.art-11287a8f853f41f183dc251f092510db
institution Directory Open Access Journal
issn 2079-9292
language English
last_indexed 2024-03-11T09:47:39Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Electronics
spelling doaj.art-11287a8f853f41f183dc251f092510db2023-11-16T16:29:19ZengMDPI AGElectronics2079-92922023-01-0112363810.3390/electronics12030638Drive System Inverter Modeling Using Symbolic RegressionMatko Glučina0Nikola Anđelić1Ivan Lorencin2Sandi Baressi Šegota3Department of Automation and Electronics, Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, CroatiaDepartment of Automation and Electronics, Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, CroatiaDepartment of Automation and Electronics, Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, CroatiaDepartment of Automation and Electronics, Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, CroatiaFor accurate and efficient control performance of electrical drives, precise values of phase voltages are required. In order to achieve control of the electric drive, the development of mathematical models of the system and its parts is often approached. Data-driven modeling using artificial intelligence can often be unprofitable due to the large amount of computing resources required. To overcome this problem, the idea is to investigate if a genetic programming–symbolic regressor (GPSR) algorithm could be used to obtain simple symbolic expressions which could estimate the mean phase voltages (black-box inverter model) and duty cycles (black-box compensation scheme) with high accuracy using a publicly available dataset. To obtain the best symbolic expressions using GPSR, a random hyperparameter search method and 5-fold cross-validation were developed. The best symbolic expressions were chosen based on their estimation performance, which was measured using the coefficient of determination (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula>), mean absolute error (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>A</mi><mi>E</mi></mrow></semantics></math></inline-formula>), and root mean squared error (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>M</mi><mi>S</mi><mi>E</mi></mrow></semantics></math></inline-formula>). The best symbolic expressions for the estimation of mean phase voltages achieved <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>A</mi><mi>E</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>M</mi><mi>S</mi><mi>E</mi></mrow></semantics></math></inline-formula> values of 0.999, 2.5, and 2.8, respectively. The best symbolic expressions for the estimation of duty cycles achieved <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>A</mi><mi>E</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>M</mi><mi>S</mi><mi>E</mi></mrow></semantics></math></inline-formula> values of 0.9999, 0.0027, and 0.003, respectively. The originality of this work lies in the application of the GPSR algorithm, which, based on a mathematical equation it generates, can estimate the value of mean phase voltages and duty cycles in a three-phase inverter. Using the obtained model, it is possible to estimate the given aforementioned values. Such high-performing estimation represents an opportunity to replace expensive online equipment with a cheaper, more precise, and faster approach, such as a GPSR-based model. The presented procedure shows that the symbolic expression for the accurate estimation of mean phase voltages and duty cycles can be obtained using the GPSR algorithm.https://www.mdpi.com/2079-9292/12/3/638black-box inverter modelblack-box compensation schemeduty cyclesgenetic programmingsymbolic regressormean phase voltages
spellingShingle Matko Glučina
Nikola Anđelić
Ivan Lorencin
Sandi Baressi Šegota
Drive System Inverter Modeling Using Symbolic Regression
Electronics
black-box inverter model
black-box compensation scheme
duty cycles
genetic programming
symbolic regressor
mean phase voltages
title Drive System Inverter Modeling Using Symbolic Regression
title_full Drive System Inverter Modeling Using Symbolic Regression
title_fullStr Drive System Inverter Modeling Using Symbolic Regression
title_full_unstemmed Drive System Inverter Modeling Using Symbolic Regression
title_short Drive System Inverter Modeling Using Symbolic Regression
title_sort drive system inverter modeling using symbolic regression
topic black-box inverter model
black-box compensation scheme
duty cycles
genetic programming
symbolic regressor
mean phase voltages
url https://www.mdpi.com/2079-9292/12/3/638
work_keys_str_mv AT matkoglucina drivesysteminvertermodelingusingsymbolicregression
AT nikolaanđelic drivesysteminvertermodelingusingsymbolicregression
AT ivanlorencin drivesysteminvertermodelingusingsymbolicregression
AT sandibaressisegota drivesysteminvertermodelingusingsymbolicregression