Summary: | AIM: The aim of this study was to evaluate the role of predation risk on the occurrence of trophic cascades in a benthic food chain, and detect if the ecological consequences of predation risk can reverberate in patterns observed across different hierarchical scales, such as prey size, prey growth efficiency and nutrient recycling patterns. METHODS: The model system used in the present experiment consisted of a simple linear food chain comprising a predator, a consumer and periphyton as basal resources. For 2 weeks, we manipulated predation risk using caged predators, incapable of killing their prey, across twelve outdoor mesocosms, simulating natural lagoon conditions. RESULTS: Our results showed that predation risk can be responsible for the occurrence of a trophic cascade and the strength of the cascade is proportional to the intensity of risk. Predation risk can also negatively influence prey biomass and growth efficiency as well as affect nutrient recycling patterns by altering prey nutrient excretion rates. Through a simple mathematical formulation, we attempted to show that individual-level experimental results can be generalized to natural populations if evolutionary constraints to prey fitness can be reproduced in experimental conditions. CONCLUSIONS: Our results corroborate to integrate ecosystem dynamics with animal behavior, highlighting that not only bottom-up but also top-down mechanisms are responsible for determining ecosystem properties. We ultimately claim that prey adaptive foraging may serve to integrate ecosystem and evolutionary ecology, resulting in the development of a more robust and predictive theory of the functioning of aquatic ecosystems.
|