Thermodynamic bound on spectral perturbations, with applications to oscillations and relaxation dynamics

In discrete-state Markovian systems, many important properties of correlation functions and relaxation dynamics depend on the spectrum of the rate matrix. Here we demonstrate the existence of a universal trade-off between thermodynamic and spectral properties. We show that the entropy production rat...

Full description

Bibliographic Details
Main Authors: Artemy Kolchinsky, Naruo Ohga, Sosuke Ito
Format: Article
Language:English
Published: American Physical Society 2024-01-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.6.013082
Description
Summary:In discrete-state Markovian systems, many important properties of correlation functions and relaxation dynamics depend on the spectrum of the rate matrix. Here we demonstrate the existence of a universal trade-off between thermodynamic and spectral properties. We show that the entropy production rate, the fundamental thermodynamic cost of a nonequilibrium steady state, bounds the difference between the eigenvalues of a nonequilibrium rate matrix and a reference equilibrium rate matrix. Using this result, we derive thermodynamic bounds on the spectral gap, which governs autocorrelation times and the speed of relaxation to a steady state. We also derive the thermodynamic bounds on the imaginary eigenvalues, which govern the speed of oscillations. We illustrate our approach using a simple model of biomolecular sensing.
ISSN:2643-1564