Unraveling the Genesis of the Geothermal System at the Northeastern Edge of the Pamir Plateau

High-temperature geothermal systems hold promise for sustainable and environmentally friendly power generation. However, China’s geothermal power capacity significantly underutilizes its abundant resources. This study focuses on the geothermal potential of the Pamir Plateau, particularly its northea...

Full description

Bibliographic Details
Main Authors: Feng Chen, Shihua Qi, Shuai Wang, Genyi He, Boyuan Zhao
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/15/20/3583
Description
Summary:High-temperature geothermal systems hold promise for sustainable and environmentally friendly power generation. However, China’s geothermal power capacity significantly underutilizes its abundant resources. This study focuses on the geothermal potential of the Pamir Plateau, particularly its northeastern edge, where complex tectonic forces converge. We aim to unveil the mechanisms driving the emergence of high-temperature geothermal reservoirs in this unique geological setting. Hydrogeochemical analysis reveals diverse profiles in geothermal water, primarily derived from atmospheric precipitation. Estimation of reservoir temperatures and simulation of geotherms unveil distinct geothermal systems. Kongur exhibits a medium–low-temperature hydrothermal system and Tashkurgan demonstrates high-temperature hydrothermal system characteristics, while the Pamir’s northeastern edge hints at a potential high-temperature dry geothermal system where there might not be a fault. These findings have important implications for sustainable energy development and future geothermal exploration.
ISSN:2073-4441