Summary: | Recent technologies have suggested the utilization of three-dimensional (3D) printing technology to enhance the fabrication accuracy of prosthetics. Accordingly, simulations are used to obtain precise parameters for subject-specified prosthetic socket. This study proposes an evaluation system to measure the accuracy of a subject-specific 3D transfemoral residuum model during the interaction with the socket in conjunction with the application of finite element methods. The proposed system can be used in future validations of socket fabrication. The evaluation is based on the measurement of the residuum’s soft tissue deformation inside two types of prosthetic sockets. In comparison with other studies, the 3D models were constructed with magnetic resonance images (MRI) with the aid of computer-aided design (CAD) software. The measurement of soft tissue deformation was conducted based on the measurement of the volumetric value of fat, muscle and skin in the pre- and post-donning phases. The result yielded a promising correlation coefficient value between the simulation and the experiment in the soft tissue deformation evaluation. The relation of the muscle−fat ratio in the residuum is extremely important in the determination of the ability of the prosthetic to deform. The environment during the socket fitting session was similar to that defined by the set boundary conditions in simulations. In view of the promising results of this study, the evaluation system proposed herein is considered reliable and is envisaged to be used in future research.
|